Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Writing graphene circuitry with ion 'pens'

28.03.2012
The unique electrical properties of graphene have enticed researchers to envision a future of fast integrated circuits made with the one-carbon-atom-thick sheets, but many challenges remain on the path to commercialization. Scientists from the University of Florida have recently tackled one of these challenges – how to reliably manufacture graphene on a large scale.

The team has developed a promising new technique for creating graphene patterns on top of silicon carbide (SiC). SiC comprises both silicon and carbon, but at high temperatures (around 1300 degrees Celcius) silicon atoms will vaporize off the surface, leaving the carbon atoms to grow into sheets of pure graphene. Researchers had previously used this thermal decomposition technique to create large sheets of graphene, which were then etched to make the patterns required for devices. The etching process, however, can introduce defects or chemical contaminants that reduce graphene's prized electron mobility.

In contrast, the Florida team's technique allowed the researchers to confine the growth of graphene to a defined pattern as small as 20 nanometers. The team found that implanting silicon or gold ions in SiC lowered the temperature at which graphene formed by approximately 100 degrees Celcius. The team implanted ions only where graphene layers were desired, and then heated the SiC to 1200 degrees Celcius. At this temperature the pure SiC did not form graphene, but the implanted areas did. Using this technique, the team successfully created graphene nanoribbons, thin lines of graphene with nanoscale dimensions.

With further refining, the process, described in the American Institute of Physics' journal Applied Physics Letters, may be able to encourage selective graphene growth at even lower temperatures, the researchers write.

Article: "Drawing graphene nanoribbons on SiC by ion implantation" is published in Applied Physics Letters.

Authors: S. Tongay (1, 2), M. Lemaitre (1), J. Fridmann (3), A.F. Hebard (2), B.P. Gila (1), and B.R. Appleton (1).

(1) Department of Material Science and Engineering, University of Florida
(2) Department of Physics, University of Florida
(3) Raith USA Inc., Ronkonkoma, New York

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Hubble sees Neptune's mysterious shrinking storm
16.02.2018 | NASA/Goddard Space Flight Center

nachricht Supermassive black hole model predicts characteristic light signals at cusp of collision
15.02.2018 | Rochester Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>