Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Writing and deleting magnets with lasers

19.04.2018

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia in Charlottesville, USA have found a way to write and delete magnets in an alloy using a laser beam - a surprising effect. The reversibility of the process opens up new possibilities in the fields of material processing, optical technology, and data storage.


A strong laser pulse disrupts the arrangement of atoms in an alloy and creates magnetic structures (left). A second, weaker, laser pulse allows the atoms to return to their original lattice sites (right).

Credit: Sander Münster/HZDR

Researchers of the HZDR, an independent German research laboratory, studied an alloy of iron and aluminum. It is interesting as a prototype material because subtle changes to its atomic arrangement can completely transform its magnetic behavior.

"The alloy possesses a highly ordered structure, with layers of iron atoms that are separated by aluminum atomic layers. When a laser beam destroys this order, the iron atoms are brought closer together and begin to behave like magnets," says HZDR physicist Rantej Bali.

Bali and his team prepared a thin film of the alloy on top of transparent magnesia through which a laser beam was shone on the film. When they, together with researchers of the HZB, directed a well-focused laser beam with a pulse of 100 femtoseconds (a femtosecond is a millionth of a billionth of a second) at the alloy, a ferromagnetic area was formed. Shooting laser pulses at the same area again - this time at reduced laser intensity - was then used to delete the magnet.

With a single laser pulse at reduced intensity, about half of the previous level of magnetization was retained, and with a series of laser pulses, the magnetization disappeared altogether. These observations were made at the HZB-run Bessy II synchrotron using a microscope that deploys soft X-rays to study the magnetic contrast.

Working with a team from the University of Virginia in Charlottesville, USA the scientist were able to clarify what happens in the alloy during this process. The simulations of the American colleagues show that the ferromagnetic state is formed when the ultra-short laser pulse heats up the thin-film material to the extent that it melts, all the way from the surface to the magnesia interface.

As the alloy cools down it enters a state known as a "supercooled liquid" wherein it remains molten, despite the temperature having dropped below the melting point. This state is reached because of a lack of nucleation sites - microscopic locations where the atoms can begin to arrange into a lattice. As the atoms move around in the supercooled state in search for nucleation sites, the temperature continues to drop. Finally, the atoms in the supercooled state must form a solid lattice, and like in a game of musical chairs, the iron and aluminum atoms end up being trapped in random positions within the lattice. The process takes only a few nanoseconds and the random arrangement of atoms renders a magnet.

The same laser, but with a reduced intensity, rearranges the atoms into a well ordered structure. The weaker laser shot melts only thin layers of the film, creating a molten pool sitting on the solid alloy. Within a nanosecond after melting, and as soon as the temperature drops below the melting point, the solid part of the film starts to regrow, and the atoms rapidly rearrange from the disordered liquid structure to the crystal lattice.

With the lattice already formed and the temperature still being high enough, the atoms possess sufficient energy to diffuse through the lattice and separate into layers of iron and aluminum. PhD student Jonathan Ehrler summarizes: "To write magnetic areas, we have to melt the material from the surface down to the interface, while to delete it, we only need to melt a fraction of it."

In further experiments, the scientists now want to investigate this process in other ordered alloys. They also want to explore the impact of a combination of several laser beams. Interference effects could be used to generate patterned magnetic materials over large areas. "The remarkably strong changes to the material property may well lead to some interesting applications," reckons Bali. Lasers are used for many different purposes in industry, for instance in material processing. This discovery may also open further avenues in optical and data storage technologies.

###

Publication: Jonathan Ehrler et al., ACS Applied Materials & Interfaces, "Laser-rewriteable Ferromagnetism at Thin Film Surfaces", DOI: http://dx.doi.org/10.1021/acsami.8b01190

Further information:

Dr. Rantej Bali / Jonathan Ehrler
Institute of Ion Beam Physics and Materials Research at HZDR
Phone +49 351 260 - 2919
Email: r.bali@hzdr.de / j.ehrler@hzdr.de

Media Contact

Christine Bohnet
c.bohnet@hzdr.de
49-351-260-2450

 @HZDR_Dresden

http://www.hzdr.de/db/Cms?pNid=0

Christine Bohnet | EurekAlert!
Further information:
http://www.hzdr.de/presse/magnetische_strukturen
http://dx.doi.org/10.1021/acsami.8b01190

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>