Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It is possible to “write” with atoms using an Atomic Force Microscope

09.01.2009
An international team of scientists, among them researchers from the department of Theoretical Condensed Matter Physics of the Universidad Autónoma de Madrid (UAM), present a new method to manipulate atoms.

Nanotechnology exploits the properties of materials on a nanometric scale, (a nanometer is one millionth of a millimeter). The ultimate limit for such miniaturization is the development of devices formed by atomic structures created artificially to fulfil a determined purpose.

The tools that permit the visualization and manipulation of atoms are called proximity microscopes. This includes the Scanning Tunneling Microscope (STM), whose development in 1986 earned G. Binning and H. Rohrer the Novel prize for physics, and more recently the Atomic Force Microscope (AFM).

In a study published in Science magazine, an international team of scientists, including researchers from the Theoretical Condensed Matter Physics department at the Universidad Autónoma de Madrid, present a new method for the manipulation of atoms based on the AFM that makes it possible to build stable atomic structures at room temperature [1].

Unlike all previously developed atomic manipulation methods that consist of pushing or pulling atoms from the surface of a material using the tip of the microscope and require very low temperatures, the new method is based on the controlled interchange of an atom at the tip for a surface atom when the two are close enough. Using the atoms at the tip (that are chemically different to those at the surface) as “ink”, it is possible to “write” or “draw” with the microscope. This interchange process can be repeated in different positions over the surface to form complex structures very efficiently. In particular, this group has “written” the chemical symbol for silicon “Si” (which is the chemical element used as “ink”) on a surface covered with tin atoms.

Thanks to numerical simulations based on quantum mechanics that require the use of supercomputers it has also been possible to explain the basic atomic mechanism behind this process and determine the conditions under which it takes place.

This new manipulation scheme drastically reduces the time necessary to realize complex atomic structures. It can even be used at room temperature and has been proven to work on various semiconductor surfaces. Therefore, this method opens new perspectives in fields like Material Science, Nanotechnology, Molecular Electronics and Spintronics. In particular, the combination of the capacity of the AFM to manipulate individual atoms on surfaces with the possibility of identifying the chemical element. This was demonstrated by the same team in an article published in last year's Nature and will enable the construction of nanostructures with properties and functionalities specified to improve the yield of electronic devices.

For example, placing specific dopant elements in the best position on semi-conductive surfaces to increase the efficiency of nanometric transistors or magnetic atoms would open the possibility of developing devices based on the control of the spin of an electron. These techniques could also bring the possibility of “nano-facturing” of qbits, which are the basic components of what could eventually become a quantum computer.

[1] Complex Patterning by Vertical Interchange Atom Manipulation Using Atomic Force Microscopy.
Yoshiaki Sugimoto 1, Pablo Pou 2, Oscar Custance 3, Pavel Jelinek 4, Masayuki Abe 1, Rubén Pérez 2 & Seizo Morita 1.

Science, Vol. 322, pp 413-417 (17 October 2008)

1 Graduate School of Engineering, Osaka University, 2-1 Yamada-Oka, 565-0871 Suita, Osaka, Japan.
2 Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
3 National Institute for Materials Science, 1-2-1 Sengen, 305-0047 Tsukuba, Ibaraki, Japan.

4 Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 1862 53, Prague, Czech Republic.

Oficina de Cultura Científica | alfa
Further information:
http://www.uam.es

More articles from Physics and Astronomy:

nachricht Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials
17.01.2018 | Universität des Saarlandes

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>