Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s Most Complex 2D Laser Beamsteering Array Demonstrated

18.01.2013
New 2-D optical phased array technology to enable advanced LADAR, other defense applications

Most people are familiar with the concept of RADAR. Radio frequency (RF) waves travel through the atmosphere, reflect off of a target, and return to the RADAR system to be processed. The amount of time it takes to return correlates to the object’s distance.

In recent decades, this technology has been revolutionized by electronically scanned (phased) arrays (ESAs), which transmit the RF waves in a particular direction without mechanical movement. Each emitter varies its phase and amplitude to form a RADAR beam in a particular direction through constructive and destructive interference with other emitters.

Similar to RADAR, laser detection and ranging, or LADAR, scans a field of view to determine distance and other information, but it uses optical beams instead of RF waves. LADAR provides a more detailed level of information that can be used for applications such as rapid 3-D mapping. However, current optical beam steering methods needed for LADAR, most of which are based on simple mechanical rotation, are simply too bulky, slow or inaccurate to meet the full potential of LADAR.

As reported in the current issue of the journal Nature, DARPA researchers have recently demonstrated the most complex 2-D optical phased array ever. The array, which has dimensions of only 576µm x 576µm, roughly the size of the head of a pin, is composed of 4,096 (64 x 64) nanoantennas integrated onto a silicon chip. Key to this breakthrough was developing a design that is scalable to a large number of nanoantennas, developing new microfabrication techniques, and integrating the electronic and photonic components onto a single chip.

“Integrating all the components of an optical phased array into a miniature 2-D chip configuration may lead to new capabilities for sensing and imaging,” said Sanjay Raman, program manager for DARPA’s Diverse Accessible Heterogeneous Integration (DAHI) program. “By bringing such functionality to a chip-scale form factor, this array can generate high-resolution beam patterns — a capability that researchers have long tried to create with optical phased arrays. This chip is truly an enabling technology for a host of systems and may one day revolutionize LADAR in much the same way that ESAs revolutionized RADAR. Beyond LADAR, this chip may have applications for biomedical imaging, 3D holographic displays and ultra-high-data-rate communications.”

This work was supported by funding from DARPA’s Short-Range, Wide Field-of-View Extremely agile, Electronically Steered Photonic Emitter (SWEEPER) program under Josh Conway, and the Electronic-Photonic Heterogeneous Integration (E-PHI) thrust of the DAHI program. Future steps include integrating non-silicon laser elements with other photonic components and silicon-based control and processing electronics directly on-chip using E-PHI technologies currently under development.

DARPA Public Affairs | EurekAlert!
Further information:
http://www.darpa.mil

More articles from Physics and Astronomy:

nachricht Magnetic field traces gas and dust swirling around supermassive black hole
22.02.2018 | Royal Astronomical Society

nachricht UMass Amherst physicists contribute to dark matter detector success
22.02.2018 | University of Massachusetts at Amherst

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>