Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s Most Complex 2D Laser Beamsteering Array Demonstrated

18.01.2013
New 2-D optical phased array technology to enable advanced LADAR, other defense applications

Most people are familiar with the concept of RADAR. Radio frequency (RF) waves travel through the atmosphere, reflect off of a target, and return to the RADAR system to be processed. The amount of time it takes to return correlates to the object’s distance.

In recent decades, this technology has been revolutionized by electronically scanned (phased) arrays (ESAs), which transmit the RF waves in a particular direction without mechanical movement. Each emitter varies its phase and amplitude to form a RADAR beam in a particular direction through constructive and destructive interference with other emitters.

Similar to RADAR, laser detection and ranging, or LADAR, scans a field of view to determine distance and other information, but it uses optical beams instead of RF waves. LADAR provides a more detailed level of information that can be used for applications such as rapid 3-D mapping. However, current optical beam steering methods needed for LADAR, most of which are based on simple mechanical rotation, are simply too bulky, slow or inaccurate to meet the full potential of LADAR.

As reported in the current issue of the journal Nature, DARPA researchers have recently demonstrated the most complex 2-D optical phased array ever. The array, which has dimensions of only 576µm x 576µm, roughly the size of the head of a pin, is composed of 4,096 (64 x 64) nanoantennas integrated onto a silicon chip. Key to this breakthrough was developing a design that is scalable to a large number of nanoantennas, developing new microfabrication techniques, and integrating the electronic and photonic components onto a single chip.

“Integrating all the components of an optical phased array into a miniature 2-D chip configuration may lead to new capabilities for sensing and imaging,” said Sanjay Raman, program manager for DARPA’s Diverse Accessible Heterogeneous Integration (DAHI) program. “By bringing such functionality to a chip-scale form factor, this array can generate high-resolution beam patterns — a capability that researchers have long tried to create with optical phased arrays. This chip is truly an enabling technology for a host of systems and may one day revolutionize LADAR in much the same way that ESAs revolutionized RADAR. Beyond LADAR, this chip may have applications for biomedical imaging, 3D holographic displays and ultra-high-data-rate communications.”

This work was supported by funding from DARPA’s Short-Range, Wide Field-of-View Extremely agile, Electronically Steered Photonic Emitter (SWEEPER) program under Josh Conway, and the Electronic-Photonic Heterogeneous Integration (E-PHI) thrust of the DAHI program. Future steps include integrating non-silicon laser elements with other photonic components and silicon-based control and processing electronics directly on-chip using E-PHI technologies currently under development.

DARPA Public Affairs | EurekAlert!
Further information:
http://www.darpa.mil

More articles from Physics and Astronomy:

nachricht Hubble observes one-of-a-kind star nicknamed 'Nasty'
22.05.2015 | NASA/Goddard Space Flight Center

nachricht Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents
22.05.2015 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>