Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's best thermometer made from light

02.06.2014

University of Adelaide physics researchers have produced the world's most sensitive thermometer – three times more precise than the best thermometers in existence.

Published in the journal Physical Review Letters, the researchers from the University's Institute for Photonics and Advanced Sensing (IPAS) report they have been able to measure temperature with a precision of 30 billionths of a degree.


Caption: A computer generated image of the Light Thermometer. A slight difference in the speed of the green and red light can tell us the temperature.

Credit: Image by Dr James Anstie, IPAS and School of Chemistry and Physics, University of Adelaide.

"We believe this is the best measurement ever made of temperature − at room temperature," says project leader Professor Andre Luiten, Chair of Experimental Physics in IPAS and the School of Chemistry and Physics, pointing out that it is possible to make more sensitive measurements of temperature in cryogenic environments (at very low temperatures) near absolute zero.

"We've been able to measure temperature differences to 30 billionths of a degree in one second," says Professor Luiten. "To emphasise how precise this is, when we examine the temperature of an object we find that it is always fluctuating. We all knew that if you looked closely enough you find that all the atoms in any material are always jiggling about, but we actually see this unceasing fluctuation with our thermometer, showing that the microscopic world is always in motion."

... more about:
»Australian »IPAS »Phone »Photonics »Physics »measure »temperature

The paper – Nano-Kelvin Thermometry and Temperature Control: Beyond the Thermal Noise Limit – describes a new and very sensitive, but unorthodox, thermometer that uses light to measure temperature. PhD candidate Wenle Weng carried out the work.

The thermometer injects two colours of light (red and green) into a highly polished crystalline disk. The two colours travel at slightly different speeds in the crystal, depending on the temperature of the crystal.

"When we heat up the crystal we find that the red light slows down by a tiny amount with respect to the green light," Professor Luiten says.

"By forcing the light to circulate thousands of times around the edge of this disk in the same way that sound concentrates and reinforces itself in a curve in a phenomena known as a "whispering gallery" – as seen in St Paul's Cathedral in London or the Whispering Wall at Barossa Reservoir – then we can measure this minuscule difference in speed with great precision."

Professor Luiten says the researchers have developed a new technique which could be redesigned for ultra-sensitive measurements of other things such as pressure, humidity, force or searching for a particular chemical.

"Being able to measure many different aspects of our environment with such a high degree of precision, using instruments small enough to carry around, has the capacity to revolutionise technologies used for a variety of industrial and medical applications where detection of trace amounts has great importance," Professor Luiten says.

###

The research is supported by the Australian Research Council and the South Australian Government's Premier's Science and Research Fund.

Media Contact:

Professor Andre Luiten
Professor of Experimental Physics
Institute for Photonics and Advanced Sensing
School of Chemistry and Physics
The University of Adelaide
Phone: +61 8 8313 2359
Mobile: +61(0) 404 817 168
andre.luiten@adelaide.edu.au

Robyn Mills
Media and Communications Officer
The University of Adelaide
Phone: +61 8 8313 6341
Mobile: +61 410 689 084
robyn.mills@adelaide.edu.au

Andre Luiten | Eurek Alert!
Further information:
http://www.adelaide.edu.au/

Further reports about: Australian IPAS Phone Photonics Physics measure temperature

More articles from Physics and Astronomy:

nachricht Mainz-based physicists find missing link between glass formation and crystallization
01.07.2016 | Johannes Gutenberg-Universität Mainz

nachricht Astronomers release spectacular survey of the distant universe
01.07.2016 | University of Nottingham

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mainz-based physicists find missing link between glass formation and crystallization

Densified regions with drastically reduced internal motion either act as crystal precursors or cluster and frustrate all further dynamics

Glasses are neither fluids nor crystals. They are amorphous solids and one of the big puzzles in condensed matter physics. For decades, the question of how...

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Mainz-based physicists find missing link between glass formation and crystallization

01.07.2016 | Physics and Astronomy

Scientists observe first signs of healing in the Antarctic ozone layer

01.07.2016 | Earth Sciences

MRI technique induces strong, enduring visual association

01.07.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>