Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The world's smallest steam engine

12.12.2011
A heat engine measuring only a few micrometres works as well as its larger counterpart, although it splutters

What would be a case for the repair shop for a car engine is completely normal for a micro engine. If it sputters, this is caused by the thermal motions of the smallest particles, which interfere with its running.

Researchers at the University of Stuttgart and the Stuttgart-based Max Planck Institute for Intelligent Systems have now observed this with a heat engine on the micrometre scale. They have also determined that the machine does actually perform work, all things considered.

Although this cannot be used as yet, the experiment carried out by the researchers in Stuttgart shows that an engine does basically work, even if it is on the microscale. This means that there is nothing, in principle, to prevent the construction of highly efficient, small heat engines.

A technology which works on a large scale can cause unexpected problems on a small one. And these can be of a fundamental nature. This is because different laws prevail in the micro- and the macroworld. Despite the different laws, some physical processes are surprisingly similar on both large and small scales. Clemens Bechinger, Professor at the University of Stuttgart and Fellow of the Max Planck Institute for Intelligent Systems, and his colleague Valentin Blickle have now observed one of these similarities.

"We've developed the world's smallest steam engine, or to be more precise the smallest Stirling engine, and found that the machine really does perform work," says Clemens Bechinger. "This was not necessarily to be expected, because the machine is so small that its motion is hindered by microscopic processes which are of no consequence in the macroworld." The disturbances cause the micromachine to run rough and, in a sense, sputter.

The laws of the microworld dictated that the researchers were not able to construct the tiny engine according to the blueprint of a normal-sized one. In the heat engine invented almost 200 years ago by Robert Stirling, a gas-filled cylinder is periodically heated and cooled so that the gas expands and contracts. This makes a piston execute a motion with which it can drive a wheel, for example.

"We successfully decreased the size of the essential parts of a heat engine, such as the working gas and piston, to only a few micrometres and then assembled them to a machine," says Valentin Blickle. The working gas in the Stuttgart-based experiment thus no longer consists of countless molecules, but of only one individual plastic bead measuring a mere three micrometres (one micrometre corresponds to one thousandth of a millimetre) which floats in water. Since the colloid particle is around 10,000 times larger than an atom, researchers can observe its motion directly in a microscope.

The physicists replaced the piston, which moves periodically up and down in a cylinder, by a focused laser beam whose intensity is periodically varied. The optical forces of the laser limit the motion of the plastic particle to a greater and a lesser degree, like the compression and expansion of the gas in the cylinder of a large heat engine. The particle then does work on the optical laser field. In order for the contributions to the work not to cancel each other out during compression and expansion, these must take place at different temperatures. This is done by heating the system from the outside during the expansion process, just like the boiler of a steam engine. The researchers replaced the coal fire of an old-fashioned steam engine with a further laser beam that heats the water suddenly, but also lets it cool down as soon as it is switched off.

The fact that the Stuttgart machine runs rough is down to the water molecules which surround the plastic bead. The water molecules are in constant motion due to their temperature and continually collide with the microparticle. In these random collisions, the plastic particle constantly exchanges energy with its surroundings on the same order of magnitude as the micromachine converts energy into work. "This effect means that the amount of energy gained varies greatly from cycle to cycle, and even brings the machine to a standstill in the extreme case," explains Valentin Blickle. Since macroscopic machines convert around 20 orders of magnitude more energy, the tiny collision energies of the smallest particles in them are not important.

The physicists are all the more astonished that the machine converts as much energy per cycle on average despite the varying power, and even runs with the same efficiency as its macroscopic counterpart under full load. "Our experiments provide us with an initial insight into the energy balance of a heat engine operating in microscopic dimensions. Although our machine does not provide any useful work as yet, there are no thermodynamic obstacles, in principle, which prohibit this in small dimensions," says Clemens Bechinger. This is surely good news for the design of reliable, highly efficient micromachines.

Original publication:
Valentin Blickle and Clemens Bechinger
Realization of a micrometre-sized stochastic heat engine
Nature Physics, 11 December 2011; DOI: 10.1038/NPHYS2163

Professor Dr. Clemens Bechinger | EurekAlert!
Further information:
http://www.uni-stuttgart.de

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>