Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's most powerful X-ray laser beam refined to scalpel precision

13.08.2012
'Self-seeding' promises to speed discoveries, add new scientific capabilities

With a thin sliver of diamond, scientists at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have transformed the Linac Coherent Light Source (LCLS) into an even more precise tool for exploring the nanoworld. The improvements yield laser pulses focused to higher intensity in a much narrower band of X-ray wavelengths, and may enable experiments that have never before been possible.


To create a precise X-ray band and make the Linac Coherent Light Source even more “laser-like,” researchers installed this chamber with a slice of diamond crystal. The new hardware sits halfway down the 130-meter bank of magnets where the X-rays are generated.
Credit: Photo by Matt Beardsley, SLAC National Accelerator Laboratory

In a process called "self-seeding," the diamond filters the laser beam to a single X-ray color, which is then amplified. Like trading a hatchet for a scalpel, the advance will give researchers more control in studying and manipulating matter at the atomic level and will deliver sharper images of materials, molecules and chemical reactions.

"The more control you have, the finer the details you can see," said Jerry Hastings, a SLAC scientist and co-author on the research, published this week in Nature Photonics. "People have been talking about self-seeding for nearly 15 years. The method we incorporated at SLAC was proposed in 2010 by Gianluca Geloni, Vitali Kocharyan and Evgeni Saldin of the European XFEL and DESY research centers in Germany. When our team from SLAC and Argonne National Laboratory built it, we were surprised by how simple, robust and cost-effective the engineering turned out to be." Hastings added that laboratories around the world are already planning to incorporate this important advance into their own X-ray laser facilities.

Self-seeding has the potential to produce X-ray pulses with significantly higher intensity than the current LCLS performance. The increased intensity in each pulse could be used to probe deep into complex materials to help answer questions about exotic substances like high-temperature superconductors or intricate electronic states like those found in topological insulators.

The LCLS generates its laser beam by accelerating bunches of electrons to nearly the speed of light and setting them on a zig-zag path with a series of magnets. This forces the electrons to emit X-rays, which are gathered into laser pulses that are a billion times brighter than any available before, and fast enough to scan samples in quadrillionths of a second.

Without self-seeding these X-ray laser pulses contain a range of wavelengths (or colors) in an unpredictable pattern, not all of which experimenters can use. Until now, creating a narrower wavelength band at LCLS meant subtracting the unwanted wavelengths, resulting in a substantial loss of intensity.

To create a precise X-ray wavelength band and make the LCLS even more "laser-like," researchers installed a slice of diamond crystal halfway down the 130-meter bank of magnets where the X-rays are generated.

Producing the narrower wavelength band is just the beginning. "The resulting pulses could pack up to 10 times more intensity when we finish optimizing the system and add more undulators," said Zhirong Huang, a SLAC accelerator physicist and co-author, who has been a major contributor to the project.

LCLS has already begun accepting proposals to use self-seeding for future experiments.

The first tests of the LCLS self-seeding system have generated intense excitement among scientists the world over. Representatives from other X-ray laser facilities, including Swiss FEL, SACLA in Japan and the European XFEL, came to help, and also learn how to implement it at their own sites.

According to Paul Emma, a co-author who was a key figure in the original commissioning of the LCLS and in implementing self-seeding, "the entire group of observers was smiling from ear to ear." Emma, now working at Lawrence Berkeley National Lab, has a history of making tough jobs look easy, but he would only say, "I was very happy to see it work."

The team included collaborators from the Technical Institute for Superhard and Novel Carbon Materials in Troitsk, Russia, which supplied the diamond filter, and Argonne National Laboratory, which designed the vacuum chamber to house it and the precision motion controls to adjust it. The research was supported by the DOE's Office of Science.

SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. To learn more, please visit www.slac.stanford.edu.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov

Andy Freeberg | EurekAlert!
Further information:
http://www.stanford.edu
http://www.slac.stanford.edu
http://science.energy.gov

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>