Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's First Glimpse of Black Hole Launchpad

28.09.2012
The current issue of Science Express, the online advance publication of the journal, features a paper by the Event Horizon telescope team – a collaboration which includes Perimeter Associate Faculty member Avery Broderick – that may shed light on the origin of the bright jets given off by some black holes.

In a world first, the team has been able to look at a distant black hole and resolve the area where its jets are launched from. This is the first empirical evidence to support the connection between black hole spin and black hole jets that has been long suspected on theoretical grounds.


Many galaxies, including our own Milky Way, have a huge black hole lurking at their cores. In about 10 percent of such galaxies, the hole gives off huge, tight streams of electrons and other sub-atomic particles traveling at nearly the speed of light. These powerful jets can extend for hundreds of thousands of light years. They can be so bright that they outshine the rest of the galaxy combined.

And yet, little is known about how such jets are formed. The Event Horizon team, in their current paper, is working to find out more. By combining and comparing data from three radio telescopes, they are beginning to image the base of such a jet – its launchpad – for the first time.

The team, coordinated by Shep Doeleman at MIT's Haystack Observatory, used the Event Horizon telescope, which is actually a network of three radio telescopes spread out over the Earth. The subject of their study is M87, a giant elliptical galaxy just over 50 million light years from our own.

That is close as galaxies go, but a long way away considering that the horizon of the black hole the team imaged is about the same size as a single solar system. It is as if the telescope could make out a poppy seed from across a continent or spot a softball on the moon. "These are some of the highest resolutions ever accessed in the history of science," says Broderick.

Broderick sums up the problem the team tackled: "With black holes, stuff is supposed to go in, and yet here we see all this stuff coming out with huge energies. Where does that energy come from?"

There are two possibilities. The first is that a black hole itself is a great reservoir of energy – a spinning black hole has a huge amount of rotational energy that the jets might tap. The second possibility is that the energy might come from some accretion process – the accretion disk is the dusty spiral of stuff falling into the black hole and the physics of accretion is not yet well understood.

With the new data coming in from M87, theorists like Broderick can start to tell the difference between these models of hole-driven jets and accretion-driven jets. The image is not yet sharp – it is trickling in pixel by pixel – but that, says Broderick, "is enough to tell the difference between your mother and your daughter." With images like the one the team is working on, we can begin to narrow in on the origin of ultrarelativistic jets.

"The first thing we learned is that the launching region is quite small," says Broderick. The jets are coming from quite close to the black hole's event horizon: the point of no return where even the light from objects tumbling into the black hole is lost. While this is not quite enough to rule out the idea that jets might be powered by accretion physics, it is clear that energy is coming either from the black hole or from the accretion processes happening right next to the black hole.

"We are now beginning to see that spin is playing a role in jet production," says Broderick. "That is, not only can we say that the jets originate near the black hole, but because the emission region is so small, it must be coming from a rotating black hole."

"The black hole is really the engine that drives the jet," he adds. "It's an extraordinary thing."

Further exploration:
http://www.eventhorizontelescope.org/
For further information, contact:
RJ Taylor
External Relations Specialist
Perimeter Institute for Theoretical Physics
519-569-7600 ext. 5371
rtaylor[at]perimeterinstitute[dot]ca
About Perimeter Institute
Perimeter Institute for Theoretical Physics is an independent, non-profit, scientific research organization working to advance our understanding of physical laws and develop new ideas about the very essence of space, time, matter, and information. Located in Waterloo, Ontario, Canada, Perimeter also provides a wide array of research training and educational outreach activities to nurture scientific talent and share the importance of discovery and innovation among students, teachers, and the general public. In partnership with the Governments of Ontario and Canada, Perimeter is a successful example of public-private collaboration in scientific research, training, and outreach.

RJ Taylor | EurekAlert!
Further information:
http://www.perimeterinstitute.ca
http://www.perimeterinstitute.ca/News/In_The_Media/World%27s_First_Glimpse_of_Black_Hole_Launchpad/

More articles from Physics and Astronomy:

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

nachricht Airborne thermometer to measure Arctic temperatures
11.01.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>