Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's First Glimpse of Black Hole Launchpad

28.09.2012
The current issue of Science Express, the online advance publication of the journal, features a paper by the Event Horizon telescope team – a collaboration which includes Perimeter Associate Faculty member Avery Broderick – that may shed light on the origin of the bright jets given off by some black holes.

In a world first, the team has been able to look at a distant black hole and resolve the area where its jets are launched from. This is the first empirical evidence to support the connection between black hole spin and black hole jets that has been long suspected on theoretical grounds.


Many galaxies, including our own Milky Way, have a huge black hole lurking at their cores. In about 10 percent of such galaxies, the hole gives off huge, tight streams of electrons and other sub-atomic particles traveling at nearly the speed of light. These powerful jets can extend for hundreds of thousands of light years. They can be so bright that they outshine the rest of the galaxy combined.

And yet, little is known about how such jets are formed. The Event Horizon team, in their current paper, is working to find out more. By combining and comparing data from three radio telescopes, they are beginning to image the base of such a jet – its launchpad – for the first time.

The team, coordinated by Shep Doeleman at MIT's Haystack Observatory, used the Event Horizon telescope, which is actually a network of three radio telescopes spread out over the Earth. The subject of their study is M87, a giant elliptical galaxy just over 50 million light years from our own.

That is close as galaxies go, but a long way away considering that the horizon of the black hole the team imaged is about the same size as a single solar system. It is as if the telescope could make out a poppy seed from across a continent or spot a softball on the moon. "These are some of the highest resolutions ever accessed in the history of science," says Broderick.

Broderick sums up the problem the team tackled: "With black holes, stuff is supposed to go in, and yet here we see all this stuff coming out with huge energies. Where does that energy come from?"

There are two possibilities. The first is that a black hole itself is a great reservoir of energy – a spinning black hole has a huge amount of rotational energy that the jets might tap. The second possibility is that the energy might come from some accretion process – the accretion disk is the dusty spiral of stuff falling into the black hole and the physics of accretion is not yet well understood.

With the new data coming in from M87, theorists like Broderick can start to tell the difference between these models of hole-driven jets and accretion-driven jets. The image is not yet sharp – it is trickling in pixel by pixel – but that, says Broderick, "is enough to tell the difference between your mother and your daughter." With images like the one the team is working on, we can begin to narrow in on the origin of ultrarelativistic jets.

"The first thing we learned is that the launching region is quite small," says Broderick. The jets are coming from quite close to the black hole's event horizon: the point of no return where even the light from objects tumbling into the black hole is lost. While this is not quite enough to rule out the idea that jets might be powered by accretion physics, it is clear that energy is coming either from the black hole or from the accretion processes happening right next to the black hole.

"We are now beginning to see that spin is playing a role in jet production," says Broderick. "That is, not only can we say that the jets originate near the black hole, but because the emission region is so small, it must be coming from a rotating black hole."

"The black hole is really the engine that drives the jet," he adds. "It's an extraordinary thing."

Further exploration:
http://www.eventhorizontelescope.org/
For further information, contact:
RJ Taylor
External Relations Specialist
Perimeter Institute for Theoretical Physics
519-569-7600 ext. 5371
rtaylor[at]perimeterinstitute[dot]ca
About Perimeter Institute
Perimeter Institute for Theoretical Physics is an independent, non-profit, scientific research organization working to advance our understanding of physical laws and develop new ideas about the very essence of space, time, matter, and information. Located in Waterloo, Ontario, Canada, Perimeter also provides a wide array of research training and educational outreach activities to nurture scientific talent and share the importance of discovery and innovation among students, teachers, and the general public. In partnership with the Governments of Ontario and Canada, Perimeter is a successful example of public-private collaboration in scientific research, training, and outreach.

RJ Taylor | EurekAlert!
Further information:
http://www.perimeterinstitute.ca
http://www.perimeterinstitute.ca/News/In_The_Media/World%27s_First_Glimpse_of_Black_Hole_Launchpad/

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>