Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


World's First Glimpse of Black Hole Launchpad

The current issue of Science Express, the online advance publication of the journal, features a paper by the Event Horizon telescope team – a collaboration which includes Perimeter Associate Faculty member Avery Broderick – that may shed light on the origin of the bright jets given off by some black holes.

In a world first, the team has been able to look at a distant black hole and resolve the area where its jets are launched from. This is the first empirical evidence to support the connection between black hole spin and black hole jets that has been long suspected on theoretical grounds.

Many galaxies, including our own Milky Way, have a huge black hole lurking at their cores. In about 10 percent of such galaxies, the hole gives off huge, tight streams of electrons and other sub-atomic particles traveling at nearly the speed of light. These powerful jets can extend for hundreds of thousands of light years. They can be so bright that they outshine the rest of the galaxy combined.

And yet, little is known about how such jets are formed. The Event Horizon team, in their current paper, is working to find out more. By combining and comparing data from three radio telescopes, they are beginning to image the base of such a jet – its launchpad – for the first time.

The team, coordinated by Shep Doeleman at MIT's Haystack Observatory, used the Event Horizon telescope, which is actually a network of three radio telescopes spread out over the Earth. The subject of their study is M87, a giant elliptical galaxy just over 50 million light years from our own.

That is close as galaxies go, but a long way away considering that the horizon of the black hole the team imaged is about the same size as a single solar system. It is as if the telescope could make out a poppy seed from across a continent or spot a softball on the moon. "These are some of the highest resolutions ever accessed in the history of science," says Broderick.

Broderick sums up the problem the team tackled: "With black holes, stuff is supposed to go in, and yet here we see all this stuff coming out with huge energies. Where does that energy come from?"

There are two possibilities. The first is that a black hole itself is a great reservoir of energy – a spinning black hole has a huge amount of rotational energy that the jets might tap. The second possibility is that the energy might come from some accretion process – the accretion disk is the dusty spiral of stuff falling into the black hole and the physics of accretion is not yet well understood.

With the new data coming in from M87, theorists like Broderick can start to tell the difference between these models of hole-driven jets and accretion-driven jets. The image is not yet sharp – it is trickling in pixel by pixel – but that, says Broderick, "is enough to tell the difference between your mother and your daughter." With images like the one the team is working on, we can begin to narrow in on the origin of ultrarelativistic jets.

"The first thing we learned is that the launching region is quite small," says Broderick. The jets are coming from quite close to the black hole's event horizon: the point of no return where even the light from objects tumbling into the black hole is lost. While this is not quite enough to rule out the idea that jets might be powered by accretion physics, it is clear that energy is coming either from the black hole or from the accretion processes happening right next to the black hole.

"We are now beginning to see that spin is playing a role in jet production," says Broderick. "That is, not only can we say that the jets originate near the black hole, but because the emission region is so small, it must be coming from a rotating black hole."

"The black hole is really the engine that drives the jet," he adds. "It's an extraordinary thing."

Further exploration:
For further information, contact:
RJ Taylor
External Relations Specialist
Perimeter Institute for Theoretical Physics
519-569-7600 ext. 5371
About Perimeter Institute
Perimeter Institute for Theoretical Physics is an independent, non-profit, scientific research organization working to advance our understanding of physical laws and develop new ideas about the very essence of space, time, matter, and information. Located in Waterloo, Ontario, Canada, Perimeter also provides a wide array of research training and educational outreach activities to nurture scientific talent and share the importance of discovery and innovation among students, teachers, and the general public. In partnership with the Governments of Ontario and Canada, Perimeter is a successful example of public-private collaboration in scientific research, training, and outreach.

RJ Taylor | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>