Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Witnessing the early growth of a giant


First ever sighting of galaxy core formation

Astronomers have uncovered for the first time the earliest stages of a massive galaxy forming in the young Universe. The discovery was made possible through combining observations from the NASA/ESA Hubble Space Telescope, NASA's Spitzer Space Telescope, ESA's Herschel Space Observatory, and the W.M. Keck Observatory in Hawaii. The growing galaxy core is blazing with the light of millions of newborn stars that are forming at a ferocious rate. The paper appears in the journal Nature on 27 August.

A Cauldron of Star Birth in the Center of a Young Galaxy

Elliptical galaxies are large, gas-poor gatherings of older stars and are one of the main types of galaxy along with their spiral and lenticular relatives. Galaxy formation theories suggest that giant elliptical galaxies form from the inside out, with a large core marking the very first stages of formation.

However, evidence of this early construction phase has eluded astronomers — until now.

... more about:
»ESA »Hubble »NASA »Observatory »Physics »Space »Telescope »Universe

Astronomers have now spotted a compact galactic core known as GOODS-N-774, and nicknamed Sparky [1]. It is seen as it appeared eleven billion years ago, just three billion years after the Big Bang.

"This core formation process is a phenomenon unique to the early Universe," explains Erica Nelson of Yale University, USA, lead author of the science paper announcing the results, "we do not see galaxies forming in this way any more. There's something about the Universe at that time that could form galaxies in this way that it now can't. We suspect that the Universe could produce denser objects because the Universe as a whole was denser shortly after the Big Bang. It is much less dense now, so it can't do it anymore."

Although only a fraction of the size of the Milky Way, the infant galaxy is crammed with so many young stars that it already contains twice as much mass as our entire galaxy. It is thought that the fledgling galaxy will continue to grow, eventually becoming a giant elliptical galaxy. The astronomers think that this barely visible galaxy may be representative of a much larger population of similar objects that are too faint or obscured by dust to be spotted — just like the Sun can appear red and faint behind the smoke of a forest fire.

Alongside determining the galaxy's size from the Hubble images, the team dug into archival far-infrared images from NASA's Spitzer Space Telescope and the ESA Herschel Space Observatory to see how fast the compact galaxy is churning out stars. GOODS-N-774 is producing 300 stars per year. "By comparison, the Milky Way produces thirty times fewer than this — roughly ten stars per year," [2] says Marijn Franx of Leiden University in the Netherlands, a co-author of the study. "This star-forming rate is really intense!"

This tiny powerhouse contains about twice as many stars as our galaxy, all crammed into a region only 6000 light-years across. The Milky Way is about 100 000 light-years across.

Astronomers believe that this frenzied star formation occurs because the galactic centre is forming deep inside a gravitational well of dark matter, an invisible form of matter that makes up the scaffolding upon which galaxies formed in the early Universe. A torrent of gas is flowing into the well and into the compact galaxy, sparking waves of star birth.

"They're very extreme environments," said Nelson. "It's like a medieval cauldron forging stars. There's a lot of turbulence, and it's bubbling. If you were in there, the night sky would be bright with young stars, and there would be a lot of dust, gas, and remnants of exploding stars. To actually see this happening is fascinating."

The sheer amount of gas and dust within an extreme star-forming region like this may explain why they have eluded astronomers until now. Bursts of star formation create dust, which builds up within the forming core and can block some starlight [3] — GOODS-N-774 was only just visible, even using the resolution and infrared capabilities of Hubble's Wide Field Camera 3.

"This galaxy seems to have been furiously forming stars for more than a billion years," adds Franx. "We have spotted it very early on in its life. Shortly after the time period we're looking at, we think that this core will have stopped forming stars, and that smaller galaxies will have merged with it over the next 10 billion years until it expanded and grew outwards in size. It would resemble one of the mammoth, sedate ellipticals we see today."

"We had been searching for this galaxy for years, and it's very exciting that we finally found it", says Dokkum, "The big challenge is to understand the physics driving the formation of such objects. The James Webb Space Telescope, Hubble's successor, will be able to help us find an answer."


[1] The astronomers found the galaxy while poring over WFC3 images of thousands of galaxies catalogued in two large Hubble surveys of the distant Universe: 3D-HST and the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). They then used instruments at the W.M. Keck Observatory to measure the galaxy's distance from Earth, and to detect how fast the gas was moving, which confirmed its massive structure.

[2] Not all stars are the same mass as our Sun. The approximately 10 stars per year formed in the Milky Way will generally be less massive than our Sun.

[3] The dust build up in the compact galaxy obscures and reddens ultraviolet light from infant stars. The dust is absorbing and re-radiating that light as infrared light.

Notes for editors

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The science paper announcing the results will appear in the journal Nature on 27 August 2014. The international team of astronomers in this study consists of E. Nelson (Yale University, USA), P. van Dokkum (Yale University, USA), M. Franx (Leiden University, The Netherlands), G. Brammer (STScI, USA), I. Momcheva (Yale University, USA), N. M. Forster Schreiber (Max Planck Institute for Extraterrestrial Physics, Garching, Germany), E. da Cunha (Max Planck Institute for Astronomy, Heidelberg, Germany), L. Tacconi (Max Planck Institute for Extraterrestrial Physics, Garching, Germany), R. Bezanson (University of Arizona, USA), A. Kirkpatrick (University of Massachusetts, USA), J. Leja (Yale University, USA), H-W. Rix (Max Planck Institute for Astronomy, Heidelberg, Germany), R. Skelton (SAAO, South Africa), A. van der Wel (Max Planck Institute for Astronomy, Heidelberg, Germany), K. Whitaker (Goddard Space Center, USA), and S. Wuyts (Max Planck Institute for Extraterrestrial Physics, Garching, Germany).

More information

Image credit: NASA, ESA, and E. Nelson (Yale University)


Erica Nelson
Yale University
New Haven, Connecticut, USA
Tel: +1-203-432-0573

Marijn Franx
Leiden Observatory
Leiden University, The Netherlands
Tel: +31 71 527 5870

Pieter van Dokkum
Yale University
New Haven, Connecticut, USA

Georgia Bladon
ESA/Hubble, Public Information Officer
Garching bei München, Germany
Tel: +44 7816 291261

Georgia Bladon | ESA/Hubble Media Newsletter
Further information:

Further reports about: ESA Hubble NASA Observatory Physics Space Telescope Universe

More articles from Physics and Astronomy:

nachricht Stellar desk in wave-like motion
08.10.2015 | Max Planck Institute for Astronomy, Heidelberg

nachricht Mysterious ripples found racing through planet-forming disk
08.10.2015 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>