Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Windy, Wet and Wild: Victoria Crater Unveils More of Mars’ Geologic Past

25.05.2009
After thoroughly investigating Victoria Crater on Mars for two years, the instruments aboard the Rover Opportunity reveal more evidence of our neighboring red planet’s windy, wet and wild past. The overview of the findings – compiled in one source – is published in the latest issue of the journal Science (May 22, 2009).

Opportunity’s two-year exploration of Victoria Crater – a half-mile wide and 250 feet deep – yielded a treasury of information about the planet’s geologic history and supported previous findings indicating that water once flowed on the planet’s surface, according to Steve Squyres, Cornell professor of astronomy and the principal investigator for NASA’s Mars Exploration Rover mission. The rover is now heading south toward Endeavor crater, 8.5 miles away.

Many of those observations – of hematite spheres (“blueberries”), sulfate-rich sandstone and small chunks of rock containing kamacite, troilite and other minerals commonly found in meteorites – are consistent with Opportunity’s findings across Meridiani Planum. “It shows that the processes that we investigated in detail for the first time at Endurance crater [where Opportunity spent six months in 2004] are regional in scale, [indicating that] the kinds of conclusions that we first reached at Endurance apply perhaps across Meridiani,” said Squyres.

Still, there are a few key differences. The rim of Victoria Crater is about 30m higher than the rim of Endurance, said Squyres; and as the rover drove south toward Victoria the hematite blueberries in the soil became ever fewer and smaller. Rocks deep inside the crater, however, contained big blueberries – indicating that the rocks higher up had less interaction with water – and thus the water’s source was likely underground.

Detailed analysis of the Victoria data will occupy researchers for years to come, said Jim Bell, professor of astronomy and leader of the mission’s Pancam color camera team.

Meanwhile, on the other side of the planet in Gusev crater, Opportunity’s twin rover Spirit caused consternation with an unexplained computer reboot in April. That problem hasn’t recurred, but the rover is now stuck, possibly belly-deep, in a patch of fine Martian soil.

“The vehicle seems to be in a unique combination of soft, sandy material and slopes that we haven’t encountered yet,” said Bell. “Neither one has been particularly problematic in the past, but the combination of the two has us bogged down.”

In 2005 Opportunity faced a similar quandary when it found itself mired down for a month in a sand trap named Purgatory Dune.

“We’re not calling this purgatory for Spirit yet, but it has that potential,” Bell said. Rover team members – including Cornell senior research associate Rob Sullivan, who played a leading role in freeing Opportunity from Purgatory Dune – are using data from the rover and from NASA’s Mars Odyssey orbiter and Mars Reconnaissance Orbiter to plan Spirit’s escape.

Opportunity, for its part, remains healthy after nearly 1900 sols (Martian days) on the planet – more than 1800 sols beyond its projected lifespan.

“We’re living on borrowed time,” Squyres said of both rovers. “But we’re pushing onward as hard as we can.”

The Jet Propulsion Lab, a division of the California Institute of Technology in Pasadena, manages the Mars Exploration Rover Project for NASA.

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Physics and Astronomy:

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>