‘Wild Cousin’ Emerges from Family Tree of Supernova

For more than two decades, astronomers have intensively studied supernova 1987A, an exploding star that had behaved like no other. Instead of growing dimmer with time, 1987A has grown brighter at X-ray and radio wavelengths.

A team of astronomers that includes the University of Chicago’s Vikram Dwarkadas is asking if supernova 1996cr, discovered by Columbia University’s Franz Bauer, is actually the “wild cousin” of supernova 1987A.

“This may be the second case, after ‘87a, where we see emission that’s increasing dramatically,” said Dwarkadas, Senior Research Associate in Astronomy & Astrophysics at Chicago. “Normally, you would expect the emission to decrease over time.”

In a new paper published in the Astrophysical Journal, Bauer, Dwarkadas and five co-authors call 1996cr a potential “wild cousin” of the earlier supernova. “These two look alike in many ways, except this newer supernova is intrinsically 1,000 times brighter,” Bauer said.

Supernova 1996cr is located 12 million light years from Earth in the spiral galaxy Circinus, making it one of the nearest-known exploding stars of the last quarter-century.

When 1996cr exploded in the mid-1990s, no one noticed. Bauer first detected the object in 2001 using NASA’s Chandra X-ray Observatory. Although intrigued by its exceptional qualities, Bauer, then at Pennsylvania State University, and his associates were unable to verify it as a supernova.

But recently acquired data from the European Southern Observatory’s Very Large Telescope in Chile prompted further investigation. After searching archival images from Australia’s Anglo-Australian Telescope, Bauer determined that the explosion occurred between Feb. 28, 1995, and March 15, 1996.

All told, Bauer’s team examined data from 18 different telescopes, both orbiting and ground-based, nearly all of it coming from the observatories’ Internet archives.

Most supernovas grow dimmer with the passage of time as they release their energy. But the X-ray and radio emissions from 1987A grew brighter because its shock wave had crashed into a dense cloud of gas and dust. Supernova shock waves initially move at speeds of 10,000 miles or more each second.

According to the calculations of Dwarkadas and other theoreticians, these interstellar gas clouds form a bubble around stars at least eight times more massive than the sun, possibly the product of smaller upheaval or a lifetime of mass-loss from solar wind emissions that took place before the supernova.

These wind-blown bubbles, as astronomers call them, are like a balloon: empty in the middle with a shell around the outside. The explosion moves rapidly through the cavity for several years because there’s almost nothing to stop it. “Then it hits this dense shell. It slows down and begins to give off a lot of emission,” Dwarkadas said.

Supernovas close enough to be studied in such detail come by only once a decade, Bauer said. “It’s a bit of a coup to find SN1996cr in the manner we did, and we could never have nailed it without the serendipitous data taken by all of these telescopes. We’ve truly entered a new era of ‘Internet astronomy,’” he said.

Co-authors of the paper included Niel Brandt, Penn State; Stefan Immler, NASA Goddard Space Flight Center; Norbert Bartel, York University, Canada; and Michael Bietenholz, York University and Hartebeesthoek Radio Observatory, South Africa. The National Science Foundation, the National Aeronautic and Space Administration, and the European Science Foundation provided funding.

Media Contact

Steve Koppes Newswise Science News

More Information:

http://www.uchicago.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors