Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Wild Cousin’ Emerges from Family Tree of Supernova

26.09.2008
Astronomers may have discovered the relative of a freakishly behaving exploding star once thought to be the only one of its kind.

For more than two decades, astronomers have intensively studied supernova 1987A, an exploding star that had behaved like no other. Instead of growing dimmer with time, 1987A has grown brighter at X-ray and radio wavelengths.

A team of astronomers that includes the University of Chicago’s Vikram Dwarkadas is asking if supernova 1996cr, discovered by Columbia University’s Franz Bauer, is actually the “wild cousin” of supernova 1987A.

“This may be the second case, after ‘87a, where we see emission that’s increasing dramatically,” said Dwarkadas, Senior Research Associate in Astronomy & Astrophysics at Chicago. “Normally, you would expect the emission to decrease over time.”

In a new paper published in the Astrophysical Journal, Bauer, Dwarkadas and five co-authors call 1996cr a potential “wild cousin” of the earlier supernova. “These two look alike in many ways, except this newer supernova is intrinsically 1,000 times brighter,” Bauer said.

Supernova 1996cr is located 12 million light years from Earth in the spiral galaxy Circinus, making it one of the nearest-known exploding stars of the last quarter-century.

When 1996cr exploded in the mid-1990s, no one noticed. Bauer first detected the object in 2001 using NASA’s Chandra X-ray Observatory. Although intrigued by its exceptional qualities, Bauer, then at Pennsylvania State University, and his associates were unable to verify it as a supernova.

But recently acquired data from the European Southern Observatory’s Very Large Telescope in Chile prompted further investigation. After searching archival images from Australia’s Anglo-Australian Telescope, Bauer determined that the explosion occurred between Feb. 28, 1995, and March 15, 1996.

All told, Bauer’s team examined data from 18 different telescopes, both orbiting and ground-based, nearly all of it coming from the observatories’ Internet archives.

Most supernovas grow dimmer with the passage of time as they release their energy. But the X-ray and radio emissions from 1987A grew brighter because its shock wave had crashed into a dense cloud of gas and dust. Supernova shock waves initially move at speeds of 10,000 miles or more each second.

According to the calculations of Dwarkadas and other theoreticians, these interstellar gas clouds form a bubble around stars at least eight times more massive than the sun, possibly the product of smaller upheaval or a lifetime of mass-loss from solar wind emissions that took place before the supernova.

These wind-blown bubbles, as astronomers call them, are like a balloon: empty in the middle with a shell around the outside. The explosion moves rapidly through the cavity for several years because there’s almost nothing to stop it. “Then it hits this dense shell. It slows down and begins to give off a lot of emission,” Dwarkadas said.

Supernovas close enough to be studied in such detail come by only once a decade, Bauer said. “It’s a bit of a coup to find SN1996cr in the manner we did, and we could never have nailed it without the serendipitous data taken by all of these telescopes. We’ve truly entered a new era of ‘Internet astronomy,’” he said.

Co-authors of the paper included Niel Brandt, Penn State; Stefan Immler, NASA Goddard Space Flight Center; Norbert Bartel, York University, Canada; and Michael Bietenholz, York University and Hartebeesthoek Radio Observatory, South Africa. The National Science Foundation, the National Aeronautic and Space Administration, and the European Science Foundation provided funding.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>