Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


‘Wild Cousin’ Emerges from Family Tree of Supernova

Astronomers may have discovered the relative of a freakishly behaving exploding star once thought to be the only one of its kind.

For more than two decades, astronomers have intensively studied supernova 1987A, an exploding star that had behaved like no other. Instead of growing dimmer with time, 1987A has grown brighter at X-ray and radio wavelengths.

A team of astronomers that includes the University of Chicago’s Vikram Dwarkadas is asking if supernova 1996cr, discovered by Columbia University’s Franz Bauer, is actually the “wild cousin” of supernova 1987A.

“This may be the second case, after ‘87a, where we see emission that’s increasing dramatically,” said Dwarkadas, Senior Research Associate in Astronomy & Astrophysics at Chicago. “Normally, you would expect the emission to decrease over time.”

In a new paper published in the Astrophysical Journal, Bauer, Dwarkadas and five co-authors call 1996cr a potential “wild cousin” of the earlier supernova. “These two look alike in many ways, except this newer supernova is intrinsically 1,000 times brighter,” Bauer said.

Supernova 1996cr is located 12 million light years from Earth in the spiral galaxy Circinus, making it one of the nearest-known exploding stars of the last quarter-century.

When 1996cr exploded in the mid-1990s, no one noticed. Bauer first detected the object in 2001 using NASA’s Chandra X-ray Observatory. Although intrigued by its exceptional qualities, Bauer, then at Pennsylvania State University, and his associates were unable to verify it as a supernova.

But recently acquired data from the European Southern Observatory’s Very Large Telescope in Chile prompted further investigation. After searching archival images from Australia’s Anglo-Australian Telescope, Bauer determined that the explosion occurred between Feb. 28, 1995, and March 15, 1996.

All told, Bauer’s team examined data from 18 different telescopes, both orbiting and ground-based, nearly all of it coming from the observatories’ Internet archives.

Most supernovas grow dimmer with the passage of time as they release their energy. But the X-ray and radio emissions from 1987A grew brighter because its shock wave had crashed into a dense cloud of gas and dust. Supernova shock waves initially move at speeds of 10,000 miles or more each second.

According to the calculations of Dwarkadas and other theoreticians, these interstellar gas clouds form a bubble around stars at least eight times more massive than the sun, possibly the product of smaller upheaval or a lifetime of mass-loss from solar wind emissions that took place before the supernova.

These wind-blown bubbles, as astronomers call them, are like a balloon: empty in the middle with a shell around the outside. The explosion moves rapidly through the cavity for several years because there’s almost nothing to stop it. “Then it hits this dense shell. It slows down and begins to give off a lot of emission,” Dwarkadas said.

Supernovas close enough to be studied in such detail come by only once a decade, Bauer said. “It’s a bit of a coup to find SN1996cr in the manner we did, and we could never have nailed it without the serendipitous data taken by all of these telescopes. We’ve truly entered a new era of ‘Internet astronomy,’” he said.

Co-authors of the paper included Niel Brandt, Penn State; Stefan Immler, NASA Goddard Space Flight Center; Norbert Bartel, York University, Canada; and Michael Bietenholz, York University and Hartebeesthoek Radio Observatory, South Africa. The National Science Foundation, the National Aeronautic and Space Administration, and the European Science Foundation provided funding.

Steve Koppes | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>