Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To widen path to outer space, UF engineers build small satellite

17.11.2008
It’s not much bigger than a softball and weighs just 2 pounds.

But the “pico satellite” being designed and built in a University of Florida aerospace engineering laboratory may hold a key to a future of easy access to outer space — one where sending satellites into orbit is as routine and inexpensive as shipping goods around the world.

“Right now, the way satellites are built, they’re all large, one-of-a-kind and very expensive,” says Norman Fitz-Coy, an associate professor of mechanical and aerospace engineering and the lead investigator on the project. “Our idea is that you could mass produce these small satellites and launch 10 or 20 from a single launch vehicle.”

The satellite is the first ever built at UF and may be the first orbiting spacecraft to be built in Florida, said Peggy Evanich, director of space research programs at UF.

Fifty-one years ago, the former Soviet Union inaugurated the space race with the launch of Sputnik. Since then, satellites have transformed communications, navigation and climatology, as well as science and the military. But satellites remain large, ranging in size from basketball to school bus proportions; expensive, with costs typically in the hundreds of millions to billions of dollars; and slowly hand-built as one-of-a-kind devices, rather than speedily mass produced, Fitz-Coy said.

Scientists and engineers now hope to change that legacy.

“There is a national push to make satellites smaller so that you can provide cheaper and more frequent access to space,” he said.

As part of that push, the National Science Foundation this fall created the Advanced Space Technologies Research and Engineering Center at the UF College of Engineering. Headed by Fitz-Coy, the center will seek to develop “pico- and nano-class small satellites” that can be built and launched for as little as $100,000 to $500,000, according to the NSF. The UF center will receive NSF funding for five years for the research.

Fitz-Coy said small satellites are not anticipated to totally replace larger ones, but rather to complement them by adding new capabilities. For example, he said, “swarms” of small satellites could take multiple, distributed measurements or observations of weather phenomena, or the Earth’s magnetic fields, providing a more comprehensive assessment than is possible with a single satellite.

“People are looking toward these to not totally replace the big satellites but to supplement what the big satellites are doing,” he said.

He said the main impediment to designing small satellites is control: The smaller the satellite, the harder it is to manage its flight path and attitude, or orientation in space – for example, which directions its instruments point, a critical parameter in spacecraft design.

“It’s similar to you driving an SUV down the road or a sub-compact,” Fitz-Coy said, explaining that while inertia helps large satellites, it is not enough to keep small satellites on track and properly oriented. “The SUV is a lot more stable than the sub-compact.”

The goal of the UF satellite, nicknamed SwampSAT, is to test a new system designed to improve small satellites’ attitude control. Having precise control is particularly important for such satellites because they have to fly relatively close to Earth so that their weak communications signals can reach their targets, he said. Because of their proximity to Earth, their instruments must be precisely aimed.

“They need to be able to control their orientation and re-orient rapidly,” he said.

Fitz-Coy and about 12 undergraduate and graduate students began the project last year and hope to complete SwampSAT late this year or early next year, he said.

The cost is anticipated to be about $100,000, with a launch in 2009 – likely aboard an unmanned NASA rocket carrying other payloads as well. The satellite will fly at an altitude of between 600 and 650 kilometers, or from 373 to 404 miles, and will remain in orbit for several years, Fitz-Coy said.

A container that could be standardized for use in transporting the small satellites aboard the rocket also is being developed. As with the satellites themselves, the goal is mass production – to be able to transport satellites to outer space much the same way that ships and trucks transport goods around the terrestrial world now, Fitz-Coy said.

Norman Fitz-Coy | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Physics and Astronomy:

nachricht Transportable laser
23.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht New for three types of extreme-energy space particles: Theory shows unified origin
23.01.2018 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>