Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To widen path to outer space, UF engineers build small satellite

17.11.2008
It’s not much bigger than a softball and weighs just 2 pounds.

But the “pico satellite” being designed and built in a University of Florida aerospace engineering laboratory may hold a key to a future of easy access to outer space — one where sending satellites into orbit is as routine and inexpensive as shipping goods around the world.

“Right now, the way satellites are built, they’re all large, one-of-a-kind and very expensive,” says Norman Fitz-Coy, an associate professor of mechanical and aerospace engineering and the lead investigator on the project. “Our idea is that you could mass produce these small satellites and launch 10 or 20 from a single launch vehicle.”

The satellite is the first ever built at UF and may be the first orbiting spacecraft to be built in Florida, said Peggy Evanich, director of space research programs at UF.

Fifty-one years ago, the former Soviet Union inaugurated the space race with the launch of Sputnik. Since then, satellites have transformed communications, navigation and climatology, as well as science and the military. But satellites remain large, ranging in size from basketball to school bus proportions; expensive, with costs typically in the hundreds of millions to billions of dollars; and slowly hand-built as one-of-a-kind devices, rather than speedily mass produced, Fitz-Coy said.

Scientists and engineers now hope to change that legacy.

“There is a national push to make satellites smaller so that you can provide cheaper and more frequent access to space,” he said.

As part of that push, the National Science Foundation this fall created the Advanced Space Technologies Research and Engineering Center at the UF College of Engineering. Headed by Fitz-Coy, the center will seek to develop “pico- and nano-class small satellites” that can be built and launched for as little as $100,000 to $500,000, according to the NSF. The UF center will receive NSF funding for five years for the research.

Fitz-Coy said small satellites are not anticipated to totally replace larger ones, but rather to complement them by adding new capabilities. For example, he said, “swarms” of small satellites could take multiple, distributed measurements or observations of weather phenomena, or the Earth’s magnetic fields, providing a more comprehensive assessment than is possible with a single satellite.

“People are looking toward these to not totally replace the big satellites but to supplement what the big satellites are doing,” he said.

He said the main impediment to designing small satellites is control: The smaller the satellite, the harder it is to manage its flight path and attitude, or orientation in space – for example, which directions its instruments point, a critical parameter in spacecraft design.

“It’s similar to you driving an SUV down the road or a sub-compact,” Fitz-Coy said, explaining that while inertia helps large satellites, it is not enough to keep small satellites on track and properly oriented. “The SUV is a lot more stable than the sub-compact.”

The goal of the UF satellite, nicknamed SwampSAT, is to test a new system designed to improve small satellites’ attitude control. Having precise control is particularly important for such satellites because they have to fly relatively close to Earth so that their weak communications signals can reach their targets, he said. Because of their proximity to Earth, their instruments must be precisely aimed.

“They need to be able to control their orientation and re-orient rapidly,” he said.

Fitz-Coy and about 12 undergraduate and graduate students began the project last year and hope to complete SwampSAT late this year or early next year, he said.

The cost is anticipated to be about $100,000, with a launch in 2009 – likely aboard an unmanned NASA rocket carrying other payloads as well. The satellite will fly at an altitude of between 600 and 650 kilometers, or from 373 to 404 miles, and will remain in orbit for several years, Fitz-Coy said.

A container that could be standardized for use in transporting the small satellites aboard the rocket also is being developed. As with the satellites themselves, the goal is mass production – to be able to transport satellites to outer space much the same way that ships and trucks transport goods around the terrestrial world now, Fitz-Coy said.

Norman Fitz-Coy | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Physics and Astronomy:

nachricht Taking a spin on plasma space tornadoes with NASA observations
20.11.2017 | NASA/Goddard Space Flight Center

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>