Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wide binary stars can wreak havoc in planetary systems

At least one of our giant planets would likely be ejected if the sun had a companion star

An international team of astrophysicists has shown that planetary systems with very distant binary stars are particularly susceptible to violent disruptions, more so than if the systems had two stellar companions with tighter orbits around each other.

The team, led by Northwestern University's Nathan Kaib, conducted 3,000 computer simulations to study the effects of binary stellar companions (some with tight orbits around each other and others with wide or distant orbits) on the formation and evolution of planetary systems.

The researchers found that wide binary stars in planetary systems can lead to dramatic events over time. In one hypothetical system, the researchers added a wide binary companion to the Earth's solar system. This triggered at least one of four giant planets (Jupiter, Saturn, Uranus and Neptune) to be ejected in almost half of the simulations.

In the computer models, these ejections typically were delayed by billions of years, so the planetary systems would spend the first parts of their lives feeling no effects from the binary stars. Only after binary orbits became very eccentric did they catastrophically disrupt the planetary systems.

The astrophysicists also found substantial evidence that this process occurs regularly in known extrasolar planetary systems.

The study was published Jan. 6 by the journal Nature. Kaib also will present the findings at 10:30 a.m. PST (Pacific Standard Time) today (Jan. 7) in a press conference at the 221st meeting of the American Astronomical Society in Long Beach, Calif.

Unlike the sun, many stars are members of binary star systems -- where two stars orbit one another -- and these stars' planetary systems can be altered by the gravity of their companion binary stars, which themselves can be affected by other forces.

The orbits of very distant or wide stellar companions often become very eccentric -- less circular -- over time, driving the once-distant star into a plunging orbit that passes very close to the planets once per orbital period. (The planets orbit the less distant star in the binary.) The gravity of this close-passing companion can then wreak havoc on planetary systems, triggering planetary scatterings and even ejections.

"The stellar orbits of wide binaries are very sensitive to disturbances from other passing stars as well as the tidal field of the Milky Way," said Kaib, a postdoctoral fellow in the Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and the department of physics and astronomy in the Weinberg College of Arts and Sciences at Northwestern.

"This causes their stellar orbits to constantly change their eccentricity -- their degree of circularity," he said. "If a wide binary lasts long enough, it eventually will find itself with a very high orbital eccentricity at some point in its life."

Kaib was interested in studying wide binaries because, unlike tight binary stars, these systems have been virtually unstudied. The stars in wide binaries are separated by more than 1,000 astronomical units (AUs) with one AU representing the distance between the Earth and sun.

When a wide binary orbit becomes very eccentric, the two stars will pass very close together once per orbit on one side of the orbital ellipse, while being very far apart on the other side of the ellipse. This can have dire consequences for planets in these systems since the gravity of a close-passing star can radically change planetary orbits around the other star, causing planets to scatter off of one another and sometimes get ejected to interstellar space.

The process of a planetary system being disrupted by a wide binary takes hundreds of millions of years, if not billions of years, to occur.

"Consequently, planets in these systems initially form and evolve as if they orbited an isolated star," Kaib said. "It is only much later that they begin to feel the effects of their companion star, which often times leads to disruption of the planetary system."

Kaib, who also is a National Fellow in the Canadian Institute for Theoretical Astrophysics at the University of Toronto, conducted the computer simulations of the process with Queen's University physics professor Martin Duncan and Sean N. Raymond, a researcher at the University of Bordeaux and the Centre national de la recherche scientifique in France.

"We also found that there is substantial evidence that this process occurs regularly in known extrasolar planetary systems," Duncan said. "Planets are believed to form on circular orbits, and they are only thought to attain highly eccentric orbits through powerful and/or violent perturbations. When we looked at the orbital eccentricities of planets that are known to reside in wide binaries, we found that they are statistically more eccentric than planets around isolated stars, such as our sun."

The researchers believe this is a telltale signature of past planetary scattering events and that those with eccentric orbits are often interpreted to be the survivors of system-wide instabilities.

"The eccentric planetary orbits seen in these systems are essentially scars from past disruptions caused by the companion star," Raymond said.

The researchers note that this observational signature only could be reproduced well when they assumed that the typical planetary system extends from its host star as much as 10 times the distance between the Earth and the sun. Otherwise, the planetary system is too compact to be affected by even a stellar companion on a very eccentric orbit.

"Recently, planets orbiting at wide distances around their host stars have been directly imaged," Duncan said. "Our work predicts that such planets are common but have so far gone largely undetected."

The title of the Nature paper is "Planetary System Disruption by Galactic Perturbations to Wide Binary Stars."

Megan Fellman | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>