Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How white is a paper?

22.10.2009
Whiter paper and better color reproduction are examples of important competitive advantages on an international market. But how white is a paper? And why do vacation photos turn out so dark if you don't buy expensive photo paper?

Per Edström at Mid Sweden University has attracted international attention for his research, which has resulted in a new generation of computational tools for simulation of light in paper and print.

Whiteness is a fundamental property of paper. But what is whiteness exactly, how does it arise, and how do you measure whiteness? How difficult can it really be to produce good color prints?

Per Edström pursues research on mathematical modeling and scientific computing. His model is replacing an old model that has been used by the paper and printing industries since the 1930s.

"Light that hits paper penetrates a bit. Some of it is absorbed and disappears, while some scatters in other directions," says Per Edström. "This is affected by fibers and fillers in the paper, and by various additives and ink. This is a rather complex process that gives paper its visual appearence. Tiny constituents in the paper provide the light with many surfaces to scatter against, and this helps create a lighter paper. Ink, on the other hand, absorbs light of different wavelengths, producing color. The total impression is also dependent on how all of the components in the paper are distributed, for example, how the ink penetrates into the paper. Finally, the color experience depends on how the eye and the brain interpret the visual impression, all of which means that it is not so simple to understand these phenomena in detail."

Per Edström has delved deeply into numerical solution methods for systems of coupled integro-differential equations. There are many applications for this, one of which is to describe how light interacts with paper and print to produce a visual experience.

"I like to challenge my students with a little contest at the end of a lecture on whiteness," says Per Edström. "They have fifteen minutes, and the student who submits the whitest paper will win a prize. Even though I have had many enthusiastic students, I have yet to award a prize. Contact me if you want to know why. And how white is a piece of paper anyway?"

Questions can be submitted to:

Per Edström, phone: +46 (0)611-862 44 or cell phone: +46 (0)73-760 21 51.
E-mail: per.edstrom@miun.se
Pressofficer Lars Aronsson; +46 (0)70 516 5336; Lars.Aronsson@miun.se

Lars Aronsson | idw
Further information:
http://www.vr.se

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>