When Particles Fall Left and Right at the Same Time

It takes only a slight disturbance for a pencil standing on its tip to fall in one direction or another. In the quantum world it is possible in principle for particles of a system to fall both left and right at the same time.

Differentiating this “and” state – the quantum entanglement of particles – from the classical “or” is an experimental challenge. Scientists from Heidelberg University’s Kirchhoff Institute for Physics have now devised a novel and universal method that enables entanglement verification for states of large atomic systems. The results of their research in the field of quantum metrology were published in “Science”.

In their experiments, the team headed by Prof. Dr. Markus Oberthaler used a classically unstable state of an ultracold atomic gas known as a Bose-Einstein condensate. This condensate is an extreme aggregate state of a system of indistinguishable particles, most of which are in the same quantum mechanical state.

The Heidelberg researchers used a gas of approximately 500 atoms at a temperature of 0.00000001 Kelvin above absolute zero. After a short time a system with a high degree of quantum entanglement emerged. To be able to experimentally verify this “and” state and its unique quantum mechanical properties, the team had to create a large number of these atomic systems under the same conditions and with different settings of the lab setup.

“This process required measurements over several weeks, during which the fluctuations of the magnetic field applied had to be 10,000 times smaller than the magnetic field of the earth,” explained the study’s primary author, Helmut Strobel.

Another challenge was to correctly analyse the measurements, which required the development of new statistical concepts. The goal was to extract the metrologically relevant information from the measured data. This so-called Fisher information, named after geneticist and statistician Ronald A. Fisher, explicitly and universally quantifies the sensitive dependence of a given quantum mechanical state on the metrologically relevant parameters.

According to Markus Oberthaler, conventional methods simply do not work in an atomic Bose-Einstein condensate of this size. Furthermore, the novel method can be used for even larger systems. “We can use it to verify the suitability of any experimental quantum state for precision measurements beyond what can be done with a classical state,” continues Prof. Oberthaler. “This is a hot topic in the field of quantum metrology.”

Markus Oberthaler heads the Synthetic Quantum Systems working group at the Kirchhoff Institute for Physics. Researchers from the Quantum Science and Technology in Arcetri (QSTAR) research centre and the European Laboratory for Non-Linear Spectroscopy (LENS) also contributed to the work.

Internet information:
http://www.kip.uni-heidelberg.de/matterwaveoptics

Original publication:
H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D.B. Hume, L. Pezzè, A. Smerzi, M.K. Oberthaler: Fisher information and entanglement of non-Gaussian spin states. Science 25 July 2014: Vol. 345 no. 6195 pp. 424-427, doi: 10.1126/science.1250147

Contact:
Prof. Dr. Markus Oberthaler
Kirchhoff Institute for Physics
Phone: +49 6221 54-5170
markus.oberthaler@kip.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Media Contact

Marietta Fuhrmann-Koch idw - Informationsdienst Wissenschaft

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors