Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When Particles Fall Left and Right at the Same Time

01.08.2014

Heidelberg physicists develop new method to verify quantum entanglement

It takes only a slight disturbance for a pencil standing on its tip to fall in one direction or another. In the quantum world it is possible in principle for particles of a system to fall both left and right at the same time.

Differentiating this “and” state – the quantum entanglement of particles – from the classical “or” is an experimental challenge. Scientists from Heidelberg University’s Kirchhoff Institute for Physics have now devised a novel and universal method that enables entanglement verification for states of large atomic systems. The results of their research in the field of quantum metrology were published in “Science”.

In their experiments, the team headed by Prof. Dr. Markus Oberthaler used a classically unstable state of an ultracold atomic gas known as a Bose-Einstein condensate. This condensate is an extreme aggregate state of a system of indistinguishable particles, most of which are in the same quantum mechanical state.

The Heidelberg researchers used a gas of approximately 500 atoms at a temperature of 0.00000001 Kelvin above absolute zero. After a short time a system with a high degree of quantum entanglement emerged. To be able to experimentally verify this “and” state and its unique quantum mechanical properties, the team had to create a large number of these atomic systems under the same conditions and with different settings of the lab setup.

“This process required measurements over several weeks, during which the fluctuations of the magnetic field applied had to be 10,000 times smaller than the magnetic field of the earth,” explained the study’s primary author, Helmut Strobel.

Another challenge was to correctly analyse the measurements, which required the development of new statistical concepts. The goal was to extract the metrologically relevant information from the measured data. This so-called Fisher information, named after geneticist and statistician Ronald A. Fisher, explicitly and universally quantifies the sensitive dependence of a given quantum mechanical state on the metrologically relevant parameters.

According to Markus Oberthaler, conventional methods simply do not work in an atomic Bose-Einstein condensate of this size. Furthermore, the novel method can be used for even larger systems. “We can use it to verify the suitability of any experimental quantum state for precision measurements beyond what can be done with a classical state,” continues Prof. Oberthaler. “This is a hot topic in the field of quantum metrology.”

Markus Oberthaler heads the Synthetic Quantum Systems working group at the Kirchhoff Institute for Physics. Researchers from the Quantum Science and Technology in Arcetri (QSTAR) research centre and the European Laboratory for Non-Linear Spectroscopy (LENS) also contributed to the work.

Internet information:
http://www.kip.uni-heidelberg.de/matterwaveoptics

Original publication:
H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D.B. Hume, L. Pezzè, A. Smerzi, M.K. Oberthaler: Fisher information and entanglement of non-Gaussian spin states. Science 25 July 2014: Vol. 345 no. 6195 pp. 424-427, doi: 10.1126/science.1250147

Contact:
Prof. Dr. Markus Oberthaler
Kirchhoff Institute for Physics
Phone: +49 6221 54-5170
markus.oberthaler@kip.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Further reports about: Bose-Einstein Fisher Physics Quantum conditions conventional measurements

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>