Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When Particles Fall Left and Right at the Same Time

01.08.2014

Heidelberg physicists develop new method to verify quantum entanglement

It takes only a slight disturbance for a pencil standing on its tip to fall in one direction or another. In the quantum world it is possible in principle for particles of a system to fall both left and right at the same time.

Differentiating this “and” state – the quantum entanglement of particles – from the classical “or” is an experimental challenge. Scientists from Heidelberg University’s Kirchhoff Institute for Physics have now devised a novel and universal method that enables entanglement verification for states of large atomic systems. The results of their research in the field of quantum metrology were published in “Science”.

In their experiments, the team headed by Prof. Dr. Markus Oberthaler used a classically unstable state of an ultracold atomic gas known as a Bose-Einstein condensate. This condensate is an extreme aggregate state of a system of indistinguishable particles, most of which are in the same quantum mechanical state.

The Heidelberg researchers used a gas of approximately 500 atoms at a temperature of 0.00000001 Kelvin above absolute zero. After a short time a system with a high degree of quantum entanglement emerged. To be able to experimentally verify this “and” state and its unique quantum mechanical properties, the team had to create a large number of these atomic systems under the same conditions and with different settings of the lab setup.

“This process required measurements over several weeks, during which the fluctuations of the magnetic field applied had to be 10,000 times smaller than the magnetic field of the earth,” explained the study’s primary author, Helmut Strobel.

Another challenge was to correctly analyse the measurements, which required the development of new statistical concepts. The goal was to extract the metrologically relevant information from the measured data. This so-called Fisher information, named after geneticist and statistician Ronald A. Fisher, explicitly and universally quantifies the sensitive dependence of a given quantum mechanical state on the metrologically relevant parameters.

According to Markus Oberthaler, conventional methods simply do not work in an atomic Bose-Einstein condensate of this size. Furthermore, the novel method can be used for even larger systems. “We can use it to verify the suitability of any experimental quantum state for precision measurements beyond what can be done with a classical state,” continues Prof. Oberthaler. “This is a hot topic in the field of quantum metrology.”

Markus Oberthaler heads the Synthetic Quantum Systems working group at the Kirchhoff Institute for Physics. Researchers from the Quantum Science and Technology in Arcetri (QSTAR) research centre and the European Laboratory for Non-Linear Spectroscopy (LENS) also contributed to the work.

Internet information:
http://www.kip.uni-heidelberg.de/matterwaveoptics

Original publication:
H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D.B. Hume, L. Pezzè, A. Smerzi, M.K. Oberthaler: Fisher information and entanglement of non-Gaussian spin states. Science 25 July 2014: Vol. 345 no. 6195 pp. 424-427, doi: 10.1126/science.1250147

Contact:
Prof. Dr. Markus Oberthaler
Kirchhoff Institute for Physics
Phone: +49 6221 54-5170
markus.oberthaler@kip.uni-heidelberg.de

Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Further reports about: Bose-Einstein Fisher Physics Quantum conditions conventional measurements

More articles from Physics and Astronomy:

nachricht Streamlining accelerated computing for industry
24.08.2016 | DOE/Oak Ridge National Laboratory

nachricht Lehigh engineer discovers a high-speed nano-avalanche
24.08.2016 | Lehigh University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Environmental DNA uncovers biodiversity in rivers

30.08.2016 | Ecology, The Environment and Conservation

Solar houses scientifically evaluated

30.08.2016 | Power and Electrical Engineering

Amazon forests: Biodiversity can help mitigate climate risks

30.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>