Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


When Particles Fall Left and Right at the Same Time


Heidelberg physicists develop new method to verify quantum entanglement

It takes only a slight disturbance for a pencil standing on its tip to fall in one direction or another. In the quantum world it is possible in principle for particles of a system to fall both left and right at the same time.

Differentiating this “and” state – the quantum entanglement of particles – from the classical “or” is an experimental challenge. Scientists from Heidelberg University’s Kirchhoff Institute for Physics have now devised a novel and universal method that enables entanglement verification for states of large atomic systems. The results of their research in the field of quantum metrology were published in “Science”.

In their experiments, the team headed by Prof. Dr. Markus Oberthaler used a classically unstable state of an ultracold atomic gas known as a Bose-Einstein condensate. This condensate is an extreme aggregate state of a system of indistinguishable particles, most of which are in the same quantum mechanical state.

The Heidelberg researchers used a gas of approximately 500 atoms at a temperature of 0.00000001 Kelvin above absolute zero. After a short time a system with a high degree of quantum entanglement emerged. To be able to experimentally verify this “and” state and its unique quantum mechanical properties, the team had to create a large number of these atomic systems under the same conditions and with different settings of the lab setup.

“This process required measurements over several weeks, during which the fluctuations of the magnetic field applied had to be 10,000 times smaller than the magnetic field of the earth,” explained the study’s primary author, Helmut Strobel.

Another challenge was to correctly analyse the measurements, which required the development of new statistical concepts. The goal was to extract the metrologically relevant information from the measured data. This so-called Fisher information, named after geneticist and statistician Ronald A. Fisher, explicitly and universally quantifies the sensitive dependence of a given quantum mechanical state on the metrologically relevant parameters.

According to Markus Oberthaler, conventional methods simply do not work in an atomic Bose-Einstein condensate of this size. Furthermore, the novel method can be used for even larger systems. “We can use it to verify the suitability of any experimental quantum state for precision measurements beyond what can be done with a classical state,” continues Prof. Oberthaler. “This is a hot topic in the field of quantum metrology.”

Markus Oberthaler heads the Synthetic Quantum Systems working group at the Kirchhoff Institute for Physics. Researchers from the Quantum Science and Technology in Arcetri (QSTAR) research centre and the European Laboratory for Non-Linear Spectroscopy (LENS) also contributed to the work.

Internet information:

Original publication:
H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D.B. Hume, L. Pezzè, A. Smerzi, M.K. Oberthaler: Fisher information and entanglement of non-Gaussian spin states. Science 25 July 2014: Vol. 345 no. 6195 pp. 424-427, doi: 10.1126/science.1250147

Prof. Dr. Markus Oberthaler
Kirchhoff Institute for Physics
Phone: +49 6221 54-5170

Communications and Marketing
Press Office, phone: +49 6221 54-2311

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Further reports about: Bose-Einstein Fisher Physics Quantum conditions conventional measurements

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>