Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What lit up the universe?

27.08.2014

New research from UCL shows we will soon uncover the origin of the ultraviolet light that bathes the cosmos, helping scientists understand how galaxies were built.

The study published today in The Astrophysical Journal Letters by UCL cosmologists Dr Andrew Pontzen and Dr Hiranya Peiris (both UCL Physics & Astronomy), together with collaborators at Princeton and Barcelona Universities, shows how forthcoming astronomical surveys will reveal what lit up the cosmos.


A computer model shows one scenario for how light is spread through the early universe on vast scales (more than 50 million light years across). Astronomers will soon know whether or not these kinds of computer models give an accurate portrayal of light in the real cosmos.

Credit: Andrew Pontzen/Fabio Governato

"Which produces more light? A country's biggest cities or its many tiny towns?" asked Dr Pontzen, lead author of the study. "Cities are brighter, but towns are far more numerous. Understanding the balance would tell you something about the organisation of the country. We're posing a similar question about the universe: does ultraviolet light come from numerous but faint galaxies, or from a smaller number of quasars?"

Quasars are the brightest objects in the Universe; their intense light is generated by gas as it falls towards a black hole. Galaxies can contain millions or billions of stars, but are still dim by comparison. Understanding whether the numerous small galaxies outshine the rare, bright quasars will provide insight into the way the universe built up today's populations of stars and planets. It will also help scientists properly calibrate their measurements of dark energy, the agent thought to be accelerating the universe's expansion and determining its far future.

The new method proposed by the team builds on a technique already used by astronomers in which quasars act as beacons to understand space. The intense light from quasars makes them easy to spot even at extreme distances, up to 95% of the way across the observable universe. The team think that studying how this light interacts with hydrogen gas on its journey to Earth will reveal the main sources of illumination in the universe, even if those sources are not themselves quasars.

Two types of hydrogen gas are found in the universe – a plain, neutral form and a second charged form which results from bombardment by UV light. These two forms can be distinguished by studying a particular wavelength of light called 'Lyman-alpha' which is only absorbed by the neutral type of hydrogen. Scientists can see where in the universe this 'Lyman-alpha' light has been absorbed to map the neutral hydrogen.

Since the quasars being studied are billions of light years away, they act as a time capsule: looking at the light shows us what the universe looked like in the distant past. The resulting map will reveal where neutral hydrogen was located billions of years ago as the universe was vigorously building its galaxies.

An even distribution of neutral hydrogen gas would suggest numerous galaxies as the source of most light, whereas a much less uniform pattern, showing a patchwork of charged and neutral hydrogen gas, would indicate that rare quasars were the primary origin of light.

Current samples of quasars aren't quite big enough for a robust analysis of the differences between the two scenarios; however, a number of surveys currently being planned should help scientists find the answer.

Chief among these is the DESI (Dark Energy Spectroscopic Instrument) survey which will include detailed measurements of about a million distant quasars. Although these measurements are designed to reveal how the expansion of the universe is accelerating due to dark energy, the new research shows that results from DESI will also determine whether the intervening gas is uniformly illuminated. In turn, the measurement of patchiness will reveal whether light in our universe is generated by 'a few cities' (quasars) or by 'many small towns' (galaxies).

Co-author Dr Hiranya Peiris, said: "It's amazing how little is known about the objects that bathed the universe in ultraviolet radiation while galaxies assembled into their present form. This technique gives us a novel handle on the intergalactic environment during this critical time in the universe's history."

Dr Pontzen, said: "It's good news all round. DESI is going to give us invaluable information about what was going on in early galaxies, objects that are so faint and distant we would never see them individually. And once that's understood in the data, the team can take account of it and still get accurate measurements of how the universe is expanding, telling us about dark energy. It illustrates how these big, ambitious projects are going to deliver astonishingly rich maps to explore. We're now working to understand what other unexpected bonuses might be pulled out from the data."

Rebecca Caygill | Eurek Alert!
Further information:
http://www.ucl.ac.uk

Further reports about: DESI Lyman-alpha UCL dark galaxies measurements neutral quasars studying technique

More articles from Physics and Astronomy:

nachricht Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'
26.07.2016 | NASA/Goddard Space Flight Center

nachricht Lonely Atoms, Happily Reunited
26.07.2016 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New study reveals where MH370 debris more likely to be found

27.07.2016 | Earth Sciences

Dirty to drinkable

27.07.2016 | Materials Sciences

Exploring one of the largest salt flats in the world

27.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>