Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Whale-inspired ocean turbine blades

29.11.2010
US Naval Academy researchers look to convert tidal energy into electricity

Interest in developing alternative energy sources is driving the consideration of a promising technology that uses underwater turbines to convert ocean tidal flow energy into electricity.

Now lessons learned from the ocean's largest mammals has inspired United States Naval Academy researchers to tackle one of the serious challenges of this technology: the low velocity associated with many tidal flows and the difficulty of extracting useful energy from low speed flows using current designs. They will present their findings today at the American Physical Society's Division of Fluid Dynamics (DFD) meeting in Long Beach, CA.

"We designed a novel blade modification for potential turbine performance improvement, which was inspired by humpback whale flippers, with the addition of tubercles, or bumps, to the leading edge of each blade," explains Mark Murray, a Naval Academy engineering professor. Previous research demonstrated the addition of biomimetically derived protuberances (technology that mimics nature) improved stall characteristics and aerodynamic performance."

The researchers' modified blades proved to be more effective in extracting energy at low speeds. Importantly, the blades did not degrade performance at high flow speeds or increase the mechanical complexity of the turbine.

Applications of this research may include the development of turbine designs that are more effective in converting low velocity tidal flow energy into useful electricity and more economically feasible to deploy.

This project was conducted as an undergraduate independent research study by Ensign Timothy Gruber, who is currently attending Massachusetts Institute of Technology's masters program, with Murray and Associate Professor David Fredriksson in the Naval Architecture and Ocean Engineering Department acting as his faculty advisors.

The presentation, "Effect of leading edge tubercles on marine tidal turbine blades" is at 11:35 a.m. on Monday, November 22, 2010 in the Long Beach Convention Center Room: 102A. ABSTRACT: http://meetings.aps.org/Meeting/DFD10/Event/133206

MORE MEETING INFORMATION

The 63rd Annual DFD Meeting is hosted this year by the University of Southern California, California State University Long Beach, California Institute of Technology, and the University of California, Los Angeles.

It will be held at the Long Beach Convention Center, located in downtown Long Beach, California. All meeting information, including directions to the Convention Center is at: http://www.dfd2010.caltech.edu/

USEFUL LINKS

Main meeting Web site:
http://www.dfd2010.caltech.edu/
Search Abstracts:
http://meetings.aps.org/Meeting/DFD10/SearchAbstract
Directions to Convention Center:
http://www.longbeachcc.com/
PRESS REGISTRATION
Credentialed full-time journalist and professional freelance journalists working on assignment for major publications or media outlets are invited to attend the conference free of charge. If you are a reporter and would like to attend, please contact Jason Bardi (jbardi@aip.org, 301-209-3091).

ONSITE WORKSPACE FOR REPORTERS

A reserved workspace with wireless internet connections will be available for use by reporters in the Promenade Ballroom of the Long Beach Convention Center on Sunday, Nov. 21 and Monday, Nov. 22 from 8:00 a.m. to 5:00 p.m. and on Tuesday, Nov. 23 from 8:00 a.m. to noon. Press announcements and other news will be available in the Virtual Press Room (see below).

VIRTUAL PRESS ROOM

The APS Division of Fluid Dynamics Virtual Press Room will be launched in mid-November and will contain dozens of story tips on some of the most interesting results at the meeting as well as stunning graphics and videos. The Virtual Press Room will serve as starting points for journalists who are interested in covering the meeting but cannot attend in person. See: http://www.aps.org/units/dfd/pressroom/index.cfm

GALLERY OF FLUID MOTION

Every year, the APS Division of Fluid Dynamics hosts posters and videos that show stunning images and graphics from either computational or experimental studies of flow phenomena. The outstanding entries, selected by a panel of referees for artistic content, originality and ability to convey information, will be honored during the meeting, placed on display at the Annual APS Meeting in March of 2011, and will appear in the annual Gallery of Fluid Motion article in the September 2011 issue of the American Institute of Physics' journal, Physics of Fluids.

This year, selected entries from the 28th Annual Gallery of Fluid Motion will be hosted as part of the Fluid Dynamics Virtual Press Room. In mid-November, when the Virtual Press Room is launched, another announcement will be sent out.

ABOUT THE APS DIVISION OF FLUID DYNAMICS

The Division of Fluid Dynamics of the American Physical Society (APS) exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic and gaseous states of matter under all conditions of temperature and pressure. See: http://www.aps.org/units/dfd/

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.aps.org/units/dfd/

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>