Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weizmann Scientists Observe Quantum Effects in Cold Chemistry

15.10.2012
At very low temperatures, close to absolute zero, chemical reactions may proceed at a much higher rate than classical chemistry says they should – because in this extreme chill, quantum effects enter the picture.

A Weizmann Institute of Science team has now confirmed this experimentally; their results will not only provide insight into processes in the intriguing quantum world in which particles act as waves, but they might explain how chemical reactions occur in the vast frigid regions of interstellar space.

Long-standing predictions are that quantum effects should allow the formation of a transient bond – one that will force colliding atoms and molecules to orbit each other, instead of separating after the collision. Such a state would be very important, as orbiting atoms and molecules could have multiple chances to interact chemically. In this theory, a reaction that would seem to have a very low probability of occurring would proceed very rapidly at certain energies.

Dr. Ed Narevicius and his team in the Institute’s Department of Chemical Physics managed, for the first time, to experimentally confirm this elusive process in a reaction they performed at chilling temperatures of just a fraction of a degree above absolute zero – 0.01°K. Their results appeared this week in Science.

“The problem,” says Dr. Narevicius, “is that in classical chemistry, we think of reactions in terms of colliding billiard balls held together by springs on the molecular level. In the classical picture, reaction barriers block those billiard balls from approaching one another, whereas in the quantum physics world, reaction barriers can be penetrated by particles, as these acquire wave-like qualities at ultra-low temperatures.“

The quest to observe quantum effects in chemical reactions started over half a century ago with pioneering experiments by Dudley Herschbach and Yuan T. Lee, who later received a Nobel Prize for their work. They succeeded in observing chemical reactions at unprecedented resolution by colliding two low-temperature, supersonic beams. However, the collisions took place at relative speeds that were much too high to resolve many quantum effects: when two fast beams collide, the relative velocity sets the collision temperature at above 100°K, much too warm for quantum effects to play a significant role. Over the years, researchers have used various ingenious techniques, including changing the angle of the beams and slowing them down to a near-halt, that managed to bring the temperatures down to around 5°K – close, but still a miss for those seeking to observe chemical reactions in quantum conditions.

The innovation that Dr. Narevicius and his team, including Alon B. Henson, Sasha Gersten, Yuval Shagam, and Julia Narevicius, introduced was to merge the beams rather than collide them. One beam was produced in a straight line, and the second beam was bent using a magnetic device until it was parallel with the first. Even though the beams were racing at high speed, the relative speed of the particles in relation to the others was zero; thus, a much lower collision temperature of only 0.01K could be achieved. One beam contained helium atoms in an excited state; the other, either argon atoms or hydrogen molecules. In the ensuing chemical reaction, the argon or hydrogen molecules became ionized, releasing electrons.

To see if quantum phenomena were in play, the researchers looked at reaction rates – a measure of how fast a reaction proceeds – at different collision energies. At high collision energies, classical effects dominated and the reaction rates slowed down gradually as the temperature dropped. But below about 3°K, the reaction rate in the merged beams suddenly took on peaks and valleys. This is a sign that a quantum phenomenon – known as scattering resonances, due to tunneling – was occurring in the reactions. At low energies, particles started behaving as waves; those waves that were able to tunnel through the potential barrier interfered constructively with the reflected waves upon collision. This creates a standing wave that corresponds to particles trapped in orbits around one another. Such interference occurs at particular energies and is marked by a dramatic increase in reaction rates.

Says Dr. Narevicius: “Our experiment is the first proof that the reaction rate can change dramatically in the cold reaction regime. Beyond the surprising results, we have shown that such measurements can serve as an ultrasensitive probe for reaction dynamics. Our observations already prove that our understanding of even the simplest ionization reaction is far from complete; it requires a thorough rethinking and the construction of better theoretical models. We expect that our method will be used to solve many puzzles in reactions that are especially relevant to interstellar chemistry, which generally occurs at ultra-low temperatures.”

Dr. Edvardas Narevicius is the incumbent of the Ernst and Kaethe Ascher Career Development Chair.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians, and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials, and developing new strategies for protecting the environment.

Jennifer Manning | Newswise Science News
Further information:
http://www.weizmann-usa.org

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>