Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weighing the Milky Way

30.07.2014

International team of researchers, including Carnegie Mellon's Matthew Walker, devise precise method for calculating the mass of galaxies

Does the Milky Way look fat in this picture? Has Andromeda been taking skinny selfies? It turns out the way some astrophysicists have been studying our galaxy made it appear that the Milky Way might be more massive than it's neighbor down the street, Andromeda.

Not true, says a study published in the journal Monthly Notices of the Royal Astronomical Society by an international group of researchers, including Matthew Walker of Carnegie Mellon University's McWilliams Center for Cosmology.

In the paper, they demonstrate a new, more accurate method for measuring the mass of galaxies. Using this method, the researchers have shown that the Milky Way has only about half the mass of its neighbor, the Andromeda Galaxy.

In previous studies, researchers were only able to estimate the mass of the Milky Way and Andromeda based on observations made using their smaller satellite dwarf galaxies. In the new study, researchers culled previously published data that contained information about the distances between the Milky Way, Andromeda and other close-by galaxies — including those that weren't satellites — that reside in and right outside an area referred to as the Local Group.

Galaxies in the Local Group are bound together by their collective gravity. As a result, while most galaxies, including those on the outskirts of the Local Group, are moving farther apart due to expansion, the galaxies in the Local Group are moving closer together because of gravity. For the first time, researchers were able to combine the available information about gravity and expansion to complete precise calculations of the masses of both the Milky Way and Andromeda.

"Historically, estimations of the Milky Way's mass have been all over the map," said Walker, an assistant professor of physics at Carnegie Mellon. "By studying two massive galaxies that are close to each other and the galaxies that surround them, we can take what we know about gravity and pair that with what we know about expansion to get an accurate account of the mass contained in each galaxy. This is the first time we've been able to measure these two things simultaneously."

By studying both the galaxies in and immediately outside the Local Group, Walker was able to pinpoint the group's center. The researchers then calculated the mass of both the ordinary, visible matter and the invisible dark matter throughout both galaxies based on each galaxy's present location within the Local Group. Andromeda had twice as much mass as the Milky Way, and in both galaxies 90 percent of the mass was made up of dark matter.

###

The study was supported by the UK's Science and Technology Facilities Council and led by Jorge Peñarrubia of the University of Edinburgh's School of Physics and Astronomy. Co-authors include Yin-Zhe Ma of the University of British Columbia and Alan McConnachie of the NRC Herzberg Institute of Astrophysics.

About Carnegie Mellon University:

Carnegie Mellon is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 12,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon has campuses in Pittsburgh, Pa., California's Silicon Valley and Qatar, and programs in Africa, Asia, Australia, Europe and Mexico.

Jocelyn Duffy | Eurek Alert!

Further reports about: Andromeda Andromeda Galaxy Milky Way Weighing dark matter galaxies gravity satellite

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>