Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Webb Telescope's NIRCam engineering test unit arrives at NASA Goddard

26.05.2010
A test unit for the "NIRCam" instrument that will fly aboard the James Webb Space Telescope has arrived at NASA's Goddard Space Flight Center in Greenbelt, Md. and has been placed in a clean room for a year's worth of tests.

The Near Infrared Camera (NIRCam) will be the primary imager on the Webb telescope and will measure light in the spectrum in the wavelength range of 0.6 to 5 microns. The unit that arrived at Goddard is actually an engineering test unit, and not the actual NIRCam that will fly aboard the Webb telescope.

The Near Infrared Camera (NIRCam) is being built by a team at University of Arizona (UoA) and Lockheed Martin's Advanced Technology Center, Palo Alto, Calif. and led by Prof. Marcia Rieke at UoA. Lockheed Martin built the NIRCam Engineering test unit (ETU). An ETU is basically a replica of the flight unit that can perform certain flight functions which are tested at NASA Goddard before flight delivery.

At NASA Goddard, the NIRCam will undergo one year's worth of testing to verifiy instrument interfaces and integration and test processes. The ETU will be used to practice installation into the Integrated Science Instrument Module (ISIM) structure. The ISIM is the heart of the Webb telescope, the unit that will house the four main Webb instruments. Measurements will also be made of the precise location of the NIRCam instrument within ISIM to later aid in alignment of the flight model. The NIRCam is a science instrument but also an Optical Telescope Element wavefront sensor, which provides something similar to instant LASIK vision correction.

The actual flight unit is currently already being built, and the outcome of the tests may lead to a change in handling procedures of the flight NIRCam, but not a change in the flight construction.

The actual NIRCam will study infrared light. Because the universe is expanding, light from the earliest galaxies has been stretched, or "redshifted," from visible light into infrared light. Humans can't see infrared light, but can perceive it as heat. NIRCam will be able to visualize infrared light, making it essential to examining the early phases of star and galaxy formation, and studying the shapes and colors of distant galaxies. NIRCam will also help astronomers learn the age of stars in nearby galaxies.

"The NIRCam ETU includes one fully functional optical channel and was used to demonstrate the hardware to be used in aligning the Webb telescope's mirror segments," said Marcia Rieke, Professor of Astronomy at the University of Arizona, and principal investigator for the near-infrared camera (NIRCam).

The James Webb Space Telescope will detect the first light emitting galaxies and star clusters to form in the Universe after the Big Bang. The NIRCam design is optimized for finding these "First Light" sources. The camera also includes features that will make it a wonderful tool for studying star formation in the Milky Way Galaxy and for discovering and characterizing planets around other stars.

Diane Yun NIRCam Instrument Manager at NASA Goddard,"A lot of hard work went into developing and testing the NIRCam ETU. We are excited to have it here at Goddard for ISIM testing. This brings us one step closer to achieving the science goals of NIRCam and the Webb telescope."

The actual NIRCam flight instrument is going to arrive at NASA Goddard in 2011 for testing and incorporation into the Webb telescope.

The Webb telescope is a partnership between NASA, the European Space Agency and the Canadian Space Agency.

For related images and video, visit:
http://www.nasa.gov/topics/universe/features/nircam-unit.html
For more information on the James Webb Space Telescope, visit:
www.jwst.nasa.gov

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov

Further reports about: Big Bang ETU ISIM Milky Way NASA NIRCam Space Space Telescope Telescope infrared light

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>