Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Webb Telescope's NIRCam engineering test unit arrives at NASA Goddard

26.05.2010
A test unit for the "NIRCam" instrument that will fly aboard the James Webb Space Telescope has arrived at NASA's Goddard Space Flight Center in Greenbelt, Md. and has been placed in a clean room for a year's worth of tests.

The Near Infrared Camera (NIRCam) will be the primary imager on the Webb telescope and will measure light in the spectrum in the wavelength range of 0.6 to 5 microns. The unit that arrived at Goddard is actually an engineering test unit, and not the actual NIRCam that will fly aboard the Webb telescope.

The Near Infrared Camera (NIRCam) is being built by a team at University of Arizona (UoA) and Lockheed Martin's Advanced Technology Center, Palo Alto, Calif. and led by Prof. Marcia Rieke at UoA. Lockheed Martin built the NIRCam Engineering test unit (ETU). An ETU is basically a replica of the flight unit that can perform certain flight functions which are tested at NASA Goddard before flight delivery.

At NASA Goddard, the NIRCam will undergo one year's worth of testing to verifiy instrument interfaces and integration and test processes. The ETU will be used to practice installation into the Integrated Science Instrument Module (ISIM) structure. The ISIM is the heart of the Webb telescope, the unit that will house the four main Webb instruments. Measurements will also be made of the precise location of the NIRCam instrument within ISIM to later aid in alignment of the flight model. The NIRCam is a science instrument but also an Optical Telescope Element wavefront sensor, which provides something similar to instant LASIK vision correction.

The actual flight unit is currently already being built, and the outcome of the tests may lead to a change in handling procedures of the flight NIRCam, but not a change in the flight construction.

The actual NIRCam will study infrared light. Because the universe is expanding, light from the earliest galaxies has been stretched, or "redshifted," from visible light into infrared light. Humans can't see infrared light, but can perceive it as heat. NIRCam will be able to visualize infrared light, making it essential to examining the early phases of star and galaxy formation, and studying the shapes and colors of distant galaxies. NIRCam will also help astronomers learn the age of stars in nearby galaxies.

"The NIRCam ETU includes one fully functional optical channel and was used to demonstrate the hardware to be used in aligning the Webb telescope's mirror segments," said Marcia Rieke, Professor of Astronomy at the University of Arizona, and principal investigator for the near-infrared camera (NIRCam).

The James Webb Space Telescope will detect the first light emitting galaxies and star clusters to form in the Universe after the Big Bang. The NIRCam design is optimized for finding these "First Light" sources. The camera also includes features that will make it a wonderful tool for studying star formation in the Milky Way Galaxy and for discovering and characterizing planets around other stars.

Diane Yun NIRCam Instrument Manager at NASA Goddard,"A lot of hard work went into developing and testing the NIRCam ETU. We are excited to have it here at Goddard for ISIM testing. This brings us one step closer to achieving the science goals of NIRCam and the Webb telescope."

The actual NIRCam flight instrument is going to arrive at NASA Goddard in 2011 for testing and incorporation into the Webb telescope.

The Webb telescope is a partnership between NASA, the European Space Agency and the Canadian Space Agency.

For related images and video, visit:
http://www.nasa.gov/topics/universe/features/nircam-unit.html
For more information on the James Webb Space Telescope, visit:
www.jwst.nasa.gov

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov

Further reports about: Big Bang ETU ISIM Milky Way NASA NIRCam Space Space Telescope Telescope infrared light

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>