Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Webb Sunshield Like an Umbrella on the Shores of the Universe

22.03.2011
The James Webb Space Telescope has a unique shield to protect its sensitive instruments from the heat and light of the sun. The sunshield is like an umbrella popping open on the shores of the cosmos that allows the instruments beneath it to see far into the universe.

Like a beach umbrella protects people from the sun's heat and ultraviolet radiation, the sunshield protects the telescope and the sensitive infrared instruments that fly beneath the Webb telescope's sunshield from our sun's heat and light. "Each of the five layers of the shield is less than half the thickness of a piece of paper. The five work together to create an effective SPF (or Sun Protection Factor) of 1,000,000," said John Durning, Deputy Project Manager for the James Webb Space Telescope Project, at NASA's Goddard Space Flight Center, Greenbelt, Md.

A new video takes viewers to Northrop Grumman's Astro Aerospace in Carpinteria, Calif. to understand the mechanics necessary to unfold the large tennis-court sized sunshield. In the 3:00 minute video, engineers are interviewed to explain how the new technology extends the sunshield in space and unfurls it before the Webb telescope attains orbit one million miles from Earth.

The video called "Stretching Webb's Wings" is part of an on-going video series about the Webb telescope called "Behind the Webb." It was produced at the Space Telescope Science Institute (STScI) in Baltimore, Md. and takes viewers behind the scenes with scientists and engineers who are creating the Webb telescope's components.

The large sunshield is 20 meters (65.6 ft.) by 12 meters (39.3 ft.). It is made of a material called Kapton that can be folded like a blanket. Kapton is a film developed by DuPont which can remain stable and strong over the wide range of temperatures, from 36K to 650 Kelvin (K) (-395°F to 710°F or -237 to 377°C), the sunshield will experience during its launch and deployment. Once on orbit, the sunshield creates a 330 K (243°F to -351°F) temperature differential between the hottest and coldest layers. Using multiple separated layers allows most of a layer’s heat to radiate to space before it reaches the next one creating a substantial temperature drop from one layer to the next.

The Kapton membranes used on the Webb telescope are coated with infrared-reflecting aluminum. The lowest two sun facing sunshield layers are coated with a silicon-based conductive coating to prevent the buildup of an electric charge, and minimize the amount of absorbed heat from the sun.

When the sunshield is folded up, it is packaged on a large pallet. A boom system being developed at Northrop Grumman Astro-aerospace in Galita, Calif. pulls each side of the sunshield from the pallet. It deploys much like a telescoping radio antenna, or like a big beach umbrella that extends upward and pops into place.

Each of the sunshield's five layers are unfurled and separated out in space to resemble a giant umbrella by spreader bars and cable drives. There are two electrical motor mechanisms called stem deployers, one on each side of the spacecraft. Their job is to "push out" from the inside, the telescoping booms thus pulling out the folded up membranes on each side. "The stem deployer extends the telescoping boom," said Mark Clampin, James Webb Observatory Project Scientist at NASA Goddard. "The metaphor that comes to mind is a sailing boat, except that the sail (membrane) would have to be raised by a telescoping main mast, rather than hoisted up the main mast."

The James Webb Space Telescope will observe primarily the infrared light from faint and very distant objects. But all objects, including telescopes, also emit infrared light in the form of heat energy. To avoid swamping the very faint astronomical signals with radiation from the telescope and the telescope from seeing its own thermal signature, the telescope and its instruments must be very cold, at an operating temperature of under 50 K (-370F/-223C).

The observatory will be pointed so that the Sun, Earth and Moon are always on one side, and the sunshield will act like a beach umbrella, keeping the Optical Telescope Element and the Integrated Science Instrument Module on the telescope's topside cool by keeping them in the shade and protecting them from the heat of the sun and warm spacecraft electronics. The telescope is on the topside and the underside sees the sun.

The Webb telescope will orbit 1,513,000 km (940,000 miles) from Earth at the L2 Lagrange point and is the first deployable optical telescope in space. It will undergo a complex post-launch sequence of deployments including the sunshield, before it becomes fully operational.

The video "Stretching Webb's Wings" will give viewers a unique behind the scenes look at the equipment that will make the sunshield expand almost a million miles from Earth.

The "Behind the Webb" video series is available in HQ, large and small Quicktime formats, HD, Large and Small WMV formats, and HD, Large and Small Xvid formats.

To see the sunshield deployment in this new "Behind the Webb" video, visit:
http://webbtelescope.org/webb_telescope/behind_the_webb/8
For more information on the sunshield, visit:
http://www.jwst.nasa.gov/sunshield.html
For more information on the James Webb Space Telescope, visit:
http://jwst.nasa.gov Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/technology/features/sunshield-umbrella.html

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>