Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Webb Sunshield Like an Umbrella on the Shores of the Universe

22.03.2011
The James Webb Space Telescope has a unique shield to protect its sensitive instruments from the heat and light of the sun. The sunshield is like an umbrella popping open on the shores of the cosmos that allows the instruments beneath it to see far into the universe.

Like a beach umbrella protects people from the sun's heat and ultraviolet radiation, the sunshield protects the telescope and the sensitive infrared instruments that fly beneath the Webb telescope's sunshield from our sun's heat and light. "Each of the five layers of the shield is less than half the thickness of a piece of paper. The five work together to create an effective SPF (or Sun Protection Factor) of 1,000,000," said John Durning, Deputy Project Manager for the James Webb Space Telescope Project, at NASA's Goddard Space Flight Center, Greenbelt, Md.

A new video takes viewers to Northrop Grumman's Astro Aerospace in Carpinteria, Calif. to understand the mechanics necessary to unfold the large tennis-court sized sunshield. In the 3:00 minute video, engineers are interviewed to explain how the new technology extends the sunshield in space and unfurls it before the Webb telescope attains orbit one million miles from Earth.

The video called "Stretching Webb's Wings" is part of an on-going video series about the Webb telescope called "Behind the Webb." It was produced at the Space Telescope Science Institute (STScI) in Baltimore, Md. and takes viewers behind the scenes with scientists and engineers who are creating the Webb telescope's components.

The large sunshield is 20 meters (65.6 ft.) by 12 meters (39.3 ft.). It is made of a material called Kapton that can be folded like a blanket. Kapton is a film developed by DuPont which can remain stable and strong over the wide range of temperatures, from 36K to 650 Kelvin (K) (-395°F to 710°F or -237 to 377°C), the sunshield will experience during its launch and deployment. Once on orbit, the sunshield creates a 330 K (243°F to -351°F) temperature differential between the hottest and coldest layers. Using multiple separated layers allows most of a layer’s heat to radiate to space before it reaches the next one creating a substantial temperature drop from one layer to the next.

The Kapton membranes used on the Webb telescope are coated with infrared-reflecting aluminum. The lowest two sun facing sunshield layers are coated with a silicon-based conductive coating to prevent the buildup of an electric charge, and minimize the amount of absorbed heat from the sun.

When the sunshield is folded up, it is packaged on a large pallet. A boom system being developed at Northrop Grumman Astro-aerospace in Galita, Calif. pulls each side of the sunshield from the pallet. It deploys much like a telescoping radio antenna, or like a big beach umbrella that extends upward and pops into place.

Each of the sunshield's five layers are unfurled and separated out in space to resemble a giant umbrella by spreader bars and cable drives. There are two electrical motor mechanisms called stem deployers, one on each side of the spacecraft. Their job is to "push out" from the inside, the telescoping booms thus pulling out the folded up membranes on each side. "The stem deployer extends the telescoping boom," said Mark Clampin, James Webb Observatory Project Scientist at NASA Goddard. "The metaphor that comes to mind is a sailing boat, except that the sail (membrane) would have to be raised by a telescoping main mast, rather than hoisted up the main mast."

The James Webb Space Telescope will observe primarily the infrared light from faint and very distant objects. But all objects, including telescopes, also emit infrared light in the form of heat energy. To avoid swamping the very faint astronomical signals with radiation from the telescope and the telescope from seeing its own thermal signature, the telescope and its instruments must be very cold, at an operating temperature of under 50 K (-370F/-223C).

The observatory will be pointed so that the Sun, Earth and Moon are always on one side, and the sunshield will act like a beach umbrella, keeping the Optical Telescope Element and the Integrated Science Instrument Module on the telescope's topside cool by keeping them in the shade and protecting them from the heat of the sun and warm spacecraft electronics. The telescope is on the topside and the underside sees the sun.

The Webb telescope will orbit 1,513,000 km (940,000 miles) from Earth at the L2 Lagrange point and is the first deployable optical telescope in space. It will undergo a complex post-launch sequence of deployments including the sunshield, before it becomes fully operational.

The video "Stretching Webb's Wings" will give viewers a unique behind the scenes look at the equipment that will make the sunshield expand almost a million miles from Earth.

The "Behind the Webb" video series is available in HQ, large and small Quicktime formats, HD, Large and Small WMV formats, and HD, Large and Small Xvid formats.

To see the sunshield deployment in this new "Behind the Webb" video, visit:
http://webbtelescope.org/webb_telescope/behind_the_webb/8
For more information on the sunshield, visit:
http://www.jwst.nasa.gov/sunshield.html
For more information on the James Webb Space Telescope, visit:
http://jwst.nasa.gov Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/technology/features/sunshield-umbrella.html

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>