Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

…and now for the weather on Mars

08.05.2013
In the north of the red planet, snowfalls occur with great regularity and can be predicted quite accurately

Snowstorms lashing down at the northern hemisphere of Mars during the icy cold winters may be predicted several weeks in advance, say researchers from the Tohoku University in Sendai (Japan) and the Max Planck Institute for Solar System Research (MPS) in Katlenburg-Lindau (Germany) in their newest publication.


In winter a layer of frozen carbon dioxide covers the Martian North Pole. Approximately 50 percent of this ice cap falls to the ground as snow. This image was taken by NASA's Mars Reconnaissance Orbiter in 2006. © NASA

For the first time, the scientists' calculations show a connection between these snowfalls and a special Martian weather phenomenon: fluctuations of pressure, temperature, wind speeds, and directions that in the northern hemisphere propagate in a wave-like manner and occur very regularly. For missions to the red planet exploring this region with rovers, such weather forecasts would offer the possibility of choosing a route that avoids heavy snow storms.

The Martian polar regions are an icy cold world. Similar to those on Earth they are covered by cohesive ice caps. In winter, when the temperatures drop below -128 degrees Celcius, this layer of ice is mainly supplied by frozen carbon dioxide from the atmosphere. The ice caps then cover a region reaching south to about 70 degrees northern latitude. Only in the comparably warm Martian summer the carbon dioxide sublimates revealing the planet's eternal ice: a considerably smaller cap of frozen water.

“Mars' seasonal ice has two different origins“, says Dr. Paul Hartogh from the MPS. „A part of the carbon dioxide from the atmosphere condensates directly on the surface – similar to the way a layer of frost forms on Earth in cold, clear weather. Another part freezes in the atmosphere”, he adds. The tiny ice crystals accumulate into clouds and fall to the ground as snow. In the new study, the researchers were now for the first time able to establish a connection between the occurrence of such ice clouds and a wave-like weather phenomenon characterized by a periodic change of pressure, temperature, wind speed, and -direction.

"This weather phenomenon on Mars is unique", says Dr. Alexander Medvedev from the MPS. Indeed, these so-called planetary waves can also be found in Earth's meteorology. However, not only are the oscillations in pressure and temperature in the lower atmosphere much weaker here. They also occur much less regularly and their wave characteristics are much less pronounced. "In the Martian northern hemisphere between fall and spring these waves can be found with astonishing reliability", the physicist adds. They propagate eastward with a uniform period of five to six days. Close to the surface, waves with higher frequencies can also be observed.

Due to the planetary waves the temperatures in the Martian atmosphere regularly oscillate around values notably below -128 degrees Celsius. This is the temperature at which carbon dioxide gas freezes. The scientists' calculations now show, that everywhere where the temperatures sink accordingly, tiny ice crystals are formed and accumulate into ice clouds. „These clouds can be found north of 70 degrees northern latitude in all layers of the atmosphere up to a height of 40 kilometres“, says Hartogh. The ice crystals that form below a height of 20 kilometres fall to the surface as snow.

"In order for such snowfalls to occur, the periodic temperature changes must be similar in all layers of the atmosphere", explains Medvedev. This is given in heights below 20 kilometres. In all other cases, the snow crystals encounter warmer air layers on their way down – and sublimate. Especially in a region in the northern hemisphere between 30 degrees western longitude and 60 degrees eastern longitude, these requirements are well fulfilled. Images taken by space telescopes and space probes show, that in this region the ice cap of frozen carbon dioxide reaches especially far to the south. The researchers' calculations suggest that all in all approximately half of the seasonal ice falls to the ground as snow.

For their simulations, Dr. Takeshi Kuroda from the Tohoku University and his colleagues from the MPS used an established climate model that they adapted to the special conditions on Mars. „The calculations need to take into account the large amounts of dust in the Martian atmosphere“, says Kuroda, who worked at the MPS until 2009 where he also received his PhD. In addition, the Martian atmosphere consists of more than 95 percent of carbon dioxide. The calculated temperatures and ice crystal densities are in good accordance with measured data obtained by NASA's Mars Reconnaissance Orbiter.

In the researchers' opinion, the new results could help to reliably predict snowstorms on Mars. "Everyone knows from experience that on Earth reliable weather forecasts are only possible for a time span of five to seven days at most", says Medvedev. "It is simply impossible to calculate whether or not it will snow somewhere on Earth 20 or 40 days in advance." On Mars this is different. The simulations show that in certain regions on Mars snow falls can be predicted far in advance. "For missions to Mars aiming to explore these regions with rovers this is valuable information", says Hartogh. The rovers' routes could be planned to avoid heavy snow storms.

Contact
Dr. Birgit Krummheuer
Press and Public Relations
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-462
Fax: +49 5556 979-240
Email: Krummheuer@­mps.mpg.de
Dr. Paul Hartogh
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-342
Dr. Alexander S. Medvedev
Phone: +49 5556 979-314
Email: Medvedev@­mps.mpg.de
Original publication
Takeshi Kuroda, Alexander S. Medvedev, Yasumasa Kasaba, and Paul Hartogh:
Carbon dioxide ice clouds, snowfalls, and baroclinic waves in the northern winter polar atmosphere of Mars

Geophysical Research Letters, Vol. 40, 1-5, 29 April 2013

Dr. Birgit Krummheuer | Max-Planck-Institute
Further information:
http://www.mpg.de/7241305/Mars-weather

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>