Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

…and now for the weather on Mars

08.05.2013
In the north of the red planet, snowfalls occur with great regularity and can be predicted quite accurately

Snowstorms lashing down at the northern hemisphere of Mars during the icy cold winters may be predicted several weeks in advance, say researchers from the Tohoku University in Sendai (Japan) and the Max Planck Institute for Solar System Research (MPS) in Katlenburg-Lindau (Germany) in their newest publication.


In winter a layer of frozen carbon dioxide covers the Martian North Pole. Approximately 50 percent of this ice cap falls to the ground as snow. This image was taken by NASA's Mars Reconnaissance Orbiter in 2006. © NASA

For the first time, the scientists' calculations show a connection between these snowfalls and a special Martian weather phenomenon: fluctuations of pressure, temperature, wind speeds, and directions that in the northern hemisphere propagate in a wave-like manner and occur very regularly. For missions to the red planet exploring this region with rovers, such weather forecasts would offer the possibility of choosing a route that avoids heavy snow storms.

The Martian polar regions are an icy cold world. Similar to those on Earth they are covered by cohesive ice caps. In winter, when the temperatures drop below -128 degrees Celcius, this layer of ice is mainly supplied by frozen carbon dioxide from the atmosphere. The ice caps then cover a region reaching south to about 70 degrees northern latitude. Only in the comparably warm Martian summer the carbon dioxide sublimates revealing the planet's eternal ice: a considerably smaller cap of frozen water.

“Mars' seasonal ice has two different origins“, says Dr. Paul Hartogh from the MPS. „A part of the carbon dioxide from the atmosphere condensates directly on the surface – similar to the way a layer of frost forms on Earth in cold, clear weather. Another part freezes in the atmosphere”, he adds. The tiny ice crystals accumulate into clouds and fall to the ground as snow. In the new study, the researchers were now for the first time able to establish a connection between the occurrence of such ice clouds and a wave-like weather phenomenon characterized by a periodic change of pressure, temperature, wind speed, and -direction.

"This weather phenomenon on Mars is unique", says Dr. Alexander Medvedev from the MPS. Indeed, these so-called planetary waves can also be found in Earth's meteorology. However, not only are the oscillations in pressure and temperature in the lower atmosphere much weaker here. They also occur much less regularly and their wave characteristics are much less pronounced. "In the Martian northern hemisphere between fall and spring these waves can be found with astonishing reliability", the physicist adds. They propagate eastward with a uniform period of five to six days. Close to the surface, waves with higher frequencies can also be observed.

Due to the planetary waves the temperatures in the Martian atmosphere regularly oscillate around values notably below -128 degrees Celsius. This is the temperature at which carbon dioxide gas freezes. The scientists' calculations now show, that everywhere where the temperatures sink accordingly, tiny ice crystals are formed and accumulate into ice clouds. „These clouds can be found north of 70 degrees northern latitude in all layers of the atmosphere up to a height of 40 kilometres“, says Hartogh. The ice crystals that form below a height of 20 kilometres fall to the surface as snow.

"In order for such snowfalls to occur, the periodic temperature changes must be similar in all layers of the atmosphere", explains Medvedev. This is given in heights below 20 kilometres. In all other cases, the snow crystals encounter warmer air layers on their way down – and sublimate. Especially in a region in the northern hemisphere between 30 degrees western longitude and 60 degrees eastern longitude, these requirements are well fulfilled. Images taken by space telescopes and space probes show, that in this region the ice cap of frozen carbon dioxide reaches especially far to the south. The researchers' calculations suggest that all in all approximately half of the seasonal ice falls to the ground as snow.

For their simulations, Dr. Takeshi Kuroda from the Tohoku University and his colleagues from the MPS used an established climate model that they adapted to the special conditions on Mars. „The calculations need to take into account the large amounts of dust in the Martian atmosphere“, says Kuroda, who worked at the MPS until 2009 where he also received his PhD. In addition, the Martian atmosphere consists of more than 95 percent of carbon dioxide. The calculated temperatures and ice crystal densities are in good accordance with measured data obtained by NASA's Mars Reconnaissance Orbiter.

In the researchers' opinion, the new results could help to reliably predict snowstorms on Mars. "Everyone knows from experience that on Earth reliable weather forecasts are only possible for a time span of five to seven days at most", says Medvedev. "It is simply impossible to calculate whether or not it will snow somewhere on Earth 20 or 40 days in advance." On Mars this is different. The simulations show that in certain regions on Mars snow falls can be predicted far in advance. "For missions to Mars aiming to explore these regions with rovers this is valuable information", says Hartogh. The rovers' routes could be planned to avoid heavy snow storms.

Contact
Dr. Birgit Krummheuer
Press and Public Relations
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-462
Fax: +49 5556 979-240
Email: Krummheuer@­mps.mpg.de
Dr. Paul Hartogh
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-342
Dr. Alexander S. Medvedev
Phone: +49 5556 979-314
Email: Medvedev@­mps.mpg.de
Original publication
Takeshi Kuroda, Alexander S. Medvedev, Yasumasa Kasaba, and Paul Hartogh:
Carbon dioxide ice clouds, snowfalls, and baroclinic waves in the northern winter polar atmosphere of Mars

Geophysical Research Letters, Vol. 40, 1-5, 29 April 2013

Dr. Birgit Krummheuer | Max-Planck-Institute
Further information:
http://www.mpg.de/7241305/Mars-weather

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>