Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


…and now for the weather on Mars

In the north of the red planet, snowfalls occur with great regularity and can be predicted quite accurately

Snowstorms lashing down at the northern hemisphere of Mars during the icy cold winters may be predicted several weeks in advance, say researchers from the Tohoku University in Sendai (Japan) and the Max Planck Institute for Solar System Research (MPS) in Katlenburg-Lindau (Germany) in their newest publication.

In winter a layer of frozen carbon dioxide covers the Martian North Pole. Approximately 50 percent of this ice cap falls to the ground as snow. This image was taken by NASA's Mars Reconnaissance Orbiter in 2006. © NASA

For the first time, the scientists' calculations show a connection between these snowfalls and a special Martian weather phenomenon: fluctuations of pressure, temperature, wind speeds, and directions that in the northern hemisphere propagate in a wave-like manner and occur very regularly. For missions to the red planet exploring this region with rovers, such weather forecasts would offer the possibility of choosing a route that avoids heavy snow storms.

The Martian polar regions are an icy cold world. Similar to those on Earth they are covered by cohesive ice caps. In winter, when the temperatures drop below -128 degrees Celcius, this layer of ice is mainly supplied by frozen carbon dioxide from the atmosphere. The ice caps then cover a region reaching south to about 70 degrees northern latitude. Only in the comparably warm Martian summer the carbon dioxide sublimates revealing the planet's eternal ice: a considerably smaller cap of frozen water.

“Mars' seasonal ice has two different origins“, says Dr. Paul Hartogh from the MPS. „A part of the carbon dioxide from the atmosphere condensates directly on the surface – similar to the way a layer of frost forms on Earth in cold, clear weather. Another part freezes in the atmosphere”, he adds. The tiny ice crystals accumulate into clouds and fall to the ground as snow. In the new study, the researchers were now for the first time able to establish a connection between the occurrence of such ice clouds and a wave-like weather phenomenon characterized by a periodic change of pressure, temperature, wind speed, and -direction.

"This weather phenomenon on Mars is unique", says Dr. Alexander Medvedev from the MPS. Indeed, these so-called planetary waves can also be found in Earth's meteorology. However, not only are the oscillations in pressure and temperature in the lower atmosphere much weaker here. They also occur much less regularly and their wave characteristics are much less pronounced. "In the Martian northern hemisphere between fall and spring these waves can be found with astonishing reliability", the physicist adds. They propagate eastward with a uniform period of five to six days. Close to the surface, waves with higher frequencies can also be observed.

Due to the planetary waves the temperatures in the Martian atmosphere regularly oscillate around values notably below -128 degrees Celsius. This is the temperature at which carbon dioxide gas freezes. The scientists' calculations now show, that everywhere where the temperatures sink accordingly, tiny ice crystals are formed and accumulate into ice clouds. „These clouds can be found north of 70 degrees northern latitude in all layers of the atmosphere up to a height of 40 kilometres“, says Hartogh. The ice crystals that form below a height of 20 kilometres fall to the surface as snow.

"In order for such snowfalls to occur, the periodic temperature changes must be similar in all layers of the atmosphere", explains Medvedev. This is given in heights below 20 kilometres. In all other cases, the snow crystals encounter warmer air layers on their way down – and sublimate. Especially in a region in the northern hemisphere between 30 degrees western longitude and 60 degrees eastern longitude, these requirements are well fulfilled. Images taken by space telescopes and space probes show, that in this region the ice cap of frozen carbon dioxide reaches especially far to the south. The researchers' calculations suggest that all in all approximately half of the seasonal ice falls to the ground as snow.

For their simulations, Dr. Takeshi Kuroda from the Tohoku University and his colleagues from the MPS used an established climate model that they adapted to the special conditions on Mars. „The calculations need to take into account the large amounts of dust in the Martian atmosphere“, says Kuroda, who worked at the MPS until 2009 where he also received his PhD. In addition, the Martian atmosphere consists of more than 95 percent of carbon dioxide. The calculated temperatures and ice crystal densities are in good accordance with measured data obtained by NASA's Mars Reconnaissance Orbiter.

In the researchers' opinion, the new results could help to reliably predict snowstorms on Mars. "Everyone knows from experience that on Earth reliable weather forecasts are only possible for a time span of five to seven days at most", says Medvedev. "It is simply impossible to calculate whether or not it will snow somewhere on Earth 20 or 40 days in advance." On Mars this is different. The simulations show that in certain regions on Mars snow falls can be predicted far in advance. "For missions to Mars aiming to explore these regions with rovers this is valuable information", says Hartogh. The rovers' routes could be planned to avoid heavy snow storms.

Dr. Birgit Krummheuer
Press and Public Relations
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-462
Fax: +49 5556 979-240
Email: Krummheuer@­
Dr. Paul Hartogh
Max Planck Institute for Solar System Research, Katlenburg-Lindau
Phone: +49 5556 979-342
Dr. Alexander S. Medvedev
Phone: +49 5556 979-314
Email: Medvedev@­
Original publication
Takeshi Kuroda, Alexander S. Medvedev, Yasumasa Kasaba, and Paul Hartogh:
Carbon dioxide ice clouds, snowfalls, and baroclinic waves in the northern winter polar atmosphere of Mars

Geophysical Research Letters, Vol. 40, 1-5, 29 April 2013

Dr. Birgit Krummheuer | Max-Planck-Institute
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>