Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ways to measure magnetism around the sun

15.07.2011
Those who study the sun face an unavoidable hurdle in their research – their observations must be done from afar. Relying on images and data collected from 90 million miles away, however, makes it tough to measure the invisible magnetic fields sweeping around the sun.

Scientists must learn more about these fields because they are crucial to understanding how coronal mass ejections, or CMEs, travel through space -- sometimes toward Earth where they can damage satellites. Now NASA researchers have made use of old mathematical techniques and new insights on how CMEs travel to devise a fresh way to measure this magnetic environment in the sun's upper atmosphere, the corona.


The brighter area represents the edge of the coronal mass ejection -- a large slinky-like structure known as a flux rope -- while the fainter area beyond that represents the bow shock. Measuring the distance between these two can help scientists measure the magnetic field strength in the corona. Credit: Gopalswamy/Astrophysical Journal Letters

"The magnetic field is the skeleton of the entire heliosphere, guiding how particles and CMEs move toward Earth," says solar physicist Nat Gopalswamy of NASA's Goddard Space Flight Center in Greenbelt, Md. He says researchers routinely measure the fields near the sun's surface, but haven't been able to do as well further out in the sun's atmosphere. "Before, we've only been able to measure it in the upper corona with a technique that required exact conditions. Our new method can be used more consistently."

Indeed, this new method can be used any time there's a good side view of a CME, Gopalswamy explains in a new paper that will appear in the July 20 issue of the Astrophysical Journal Letters.

The mathematical relationship between how an object moves through gas and the bow shock it creates – that's the region of compressed and distorted gas that flows around a fast-moving object, much like the shock created by a supersonic jet -- has been understood since the 1960s. When an object moves through gas that is electrically charged, known as "plasma," that movement also corresponds to the strength of the magnetic field.

The problem in the solar environment was spotting a CME's bow shock as it traveled through the upper corona. In that part of the sun's atmosphere, scientists weren't finding the signature ring around a CME that signified a bow shock in images closer to the sun. But on March 25, 2008, the sun provided a perfect test case: a CME traveling at three million miles per hour and reported by several NASA spacecraft including the Solar and Heliospheric Observatory (SOHO) and the two Solar TErrestrial RElations Observatory (STEREO) spacecraft. From the perspective of both SOHO and STEREO-A, the CME appeared to be bursting off the horizon, or limb, of the sun. Limb events like this offer the side-view needed to best watch how a CME develops over time.

Gopalswamy realized that the shock could indeed be seen in standard white light images in these pictures, it just didn't look like what he expected. Given how tenuous the solar atmosphere is, the shocks were much less precise than usual, drifting out raggedly from the main event. "They don't stay close to the CME," says Gopalswamy. "They escape from the edges of the ejection and fizzle out as the CME slows down."

For the March 25 event, the team spotted the contours of a diffuse ring around the edges of the CME. From there determining the strength of the magnetic fields was a fairly simple math problem. The distance between the CME and the bow shock, as well as the CME's radius of curvature, all give information about the medium through which the shock moves – much the way one might analyze the speed and shape of a wave to determine whether it's moving through water or something thicker like oil.

In this case, the speed of the shock can be used to find what's known as the "Alfvén speed" of the medium. Alfvén speed governs how fast waves can propagate through plasma the same way sound speed governs how sound travels through differing mediums like water or air. Indeed, much like the sound barrier, Alfvén speed determines how fast something can travel through a magnetized field before creating a shock. Once this speed is known, the strength of the magnetic field itself can be determined.

This mathematical technique had previously been incorporated into other studies where one could spot a more well-defined bow shock and used to do such things as determine the position of Earth's shock or to better understand the curvature of a CME. "This is a testament to how the different subdisciplines of heliophysics can be integrated," says Joe Gurman, who is the project scientist for SOHO and STEREO. "Here we see a method originally developed to study Earth's magnetic environment extended first to understand interplanetary CMEs and CMEs very near the Sun, and now to measure the magnetic field in the corona."

To help confirm the method, Gopalswamy and his co-author on the paper, Seiji Yashiro of Goddard and Catholic University, took measurements of the field strength at various distances from the sun. This range agreed with other estimates, adding to the team's belief that this could be a useful technique for future measurements. Added to other information about the corona that is easier to obtain such as particle density, temperature and magnetic field direction, measuring the magnetic field strength can help round out a picture of the environment around the sun despite collecting data from over 90 million miles away.

"Knowledge of the magnetic field is crucial for all attempts to understand the physics of space weather," says Gurman. "And it's especially gratifying to see both STEREO and SOHO – the fifteen-year-old workhorse of the Heliophysics observing system – being used together to improve that picture."

This research was supported by NASA's Living With A Star Program, which provides missions to improve our understanding of how and why the Sun varies, how the Earth and Solar System respond, and how the variability and response affects humanity in Space and on Earth.

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>