Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New ways to measure magnetism around the sun

15.07.2011
Those who study the sun face an unavoidable hurdle in their research – their observations must be done from afar. Relying on images and data collected from 90 million miles away, however, makes it tough to measure the invisible magnetic fields sweeping around the sun.

Scientists must learn more about these fields because they are crucial to understanding how coronal mass ejections, or CMEs, travel through space -- sometimes toward Earth where they can damage satellites. Now NASA researchers have made use of old mathematical techniques and new insights on how CMEs travel to devise a fresh way to measure this magnetic environment in the sun's upper atmosphere, the corona.


The brighter area represents the edge of the coronal mass ejection -- a large slinky-like structure known as a flux rope -- while the fainter area beyond that represents the bow shock. Measuring the distance between these two can help scientists measure the magnetic field strength in the corona. Credit: Gopalswamy/Astrophysical Journal Letters

"The magnetic field is the skeleton of the entire heliosphere, guiding how particles and CMEs move toward Earth," says solar physicist Nat Gopalswamy of NASA's Goddard Space Flight Center in Greenbelt, Md. He says researchers routinely measure the fields near the sun's surface, but haven't been able to do as well further out in the sun's atmosphere. "Before, we've only been able to measure it in the upper corona with a technique that required exact conditions. Our new method can be used more consistently."

Indeed, this new method can be used any time there's a good side view of a CME, Gopalswamy explains in a new paper that will appear in the July 20 issue of the Astrophysical Journal Letters.

The mathematical relationship between how an object moves through gas and the bow shock it creates – that's the region of compressed and distorted gas that flows around a fast-moving object, much like the shock created by a supersonic jet -- has been understood since the 1960s. When an object moves through gas that is electrically charged, known as "plasma," that movement also corresponds to the strength of the magnetic field.

The problem in the solar environment was spotting a CME's bow shock as it traveled through the upper corona. In that part of the sun's atmosphere, scientists weren't finding the signature ring around a CME that signified a bow shock in images closer to the sun. But on March 25, 2008, the sun provided a perfect test case: a CME traveling at three million miles per hour and reported by several NASA spacecraft including the Solar and Heliospheric Observatory (SOHO) and the two Solar TErrestrial RElations Observatory (STEREO) spacecraft. From the perspective of both SOHO and STEREO-A, the CME appeared to be bursting off the horizon, or limb, of the sun. Limb events like this offer the side-view needed to best watch how a CME develops over time.

Gopalswamy realized that the shock could indeed be seen in standard white light images in these pictures, it just didn't look like what he expected. Given how tenuous the solar atmosphere is, the shocks were much less precise than usual, drifting out raggedly from the main event. "They don't stay close to the CME," says Gopalswamy. "They escape from the edges of the ejection and fizzle out as the CME slows down."

For the March 25 event, the team spotted the contours of a diffuse ring around the edges of the CME. From there determining the strength of the magnetic fields was a fairly simple math problem. The distance between the CME and the bow shock, as well as the CME's radius of curvature, all give information about the medium through which the shock moves – much the way one might analyze the speed and shape of a wave to determine whether it's moving through water or something thicker like oil.

In this case, the speed of the shock can be used to find what's known as the "Alfvén speed" of the medium. Alfvén speed governs how fast waves can propagate through plasma the same way sound speed governs how sound travels through differing mediums like water or air. Indeed, much like the sound barrier, Alfvén speed determines how fast something can travel through a magnetized field before creating a shock. Once this speed is known, the strength of the magnetic field itself can be determined.

This mathematical technique had previously been incorporated into other studies where one could spot a more well-defined bow shock and used to do such things as determine the position of Earth's shock or to better understand the curvature of a CME. "This is a testament to how the different subdisciplines of heliophysics can be integrated," says Joe Gurman, who is the project scientist for SOHO and STEREO. "Here we see a method originally developed to study Earth's magnetic environment extended first to understand interplanetary CMEs and CMEs very near the Sun, and now to measure the magnetic field in the corona."

To help confirm the method, Gopalswamy and his co-author on the paper, Seiji Yashiro of Goddard and Catholic University, took measurements of the field strength at various distances from the sun. This range agreed with other estimates, adding to the team's belief that this could be a useful technique for future measurements. Added to other information about the corona that is easier to obtain such as particle density, temperature and magnetic field direction, measuring the magnetic field strength can help round out a picture of the environment around the sun despite collecting data from over 90 million miles away.

"Knowledge of the magnetic field is crucial for all attempts to understand the physics of space weather," says Gurman. "And it's especially gratifying to see both STEREO and SOHO – the fifteen-year-old workhorse of the Heliophysics observing system – being used together to improve that picture."

This research was supported by NASA's Living With A Star Program, which provides missions to improve our understanding of how and why the Sun varies, how the Earth and Solar System respond, and how the variability and response affects humanity in Space and on Earth.

Susan Hendrix | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>