Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Waterloo-led experiment achieves the strongest coupling between light and matter

13.10.2016

Researchers at the University of Waterloo's Institute for Quantum Computing (IQC) recorded an interaction between light and matter 10 times larger than previously seen. The strength of the interaction between photons and a qubit was so large that it opens the door to a realm of physics and applications unattainable until now.

The results appear in the paper, "Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime," published in Nature Physics.


This illustration shows a qubit attached to a waveguide where light in the form of microwaves enters and exits.

Credit: University of Waterloo

"We are enabling the investigation of light-matter interactions in a new domain in quantum optics," said Pol Forn-Diaz, a postdoctoral fellow at IQC and lead author of the paper. "The possibilities are exciting because our circuit could potentially act as a quantum simulator to study other interesting quantum systems in nature."

The ultrastrong coupling between photons and qubits may lead to the exploration of new physics related to biological processes, exotic materials such as high-temperature superconductors, and even relativistic physics.

To conduct their experiment, the researchers fabricated aluminum circuits in the University of Waterloo's Quantum NanoFab, and then cooled them in dilution refrigerators to a temperature as low as one per cent of a degree above absolute zero. The circuits become superconducting at these cold temperatures, meaning that they can carry a current without resistance or losing energy. These aluminum circuits, known as superconducting qubits, obey the laws of quantum mechanics and can behave as artificial atoms.

To control the quantum state of a superconducting circuit, the researchers sent photons using microwave pulses into the superconducting circuit and applied a small magnetic field through a coil inside the dilution refrigerator. By measuring the photon transmission, the researchers could define the resonance of the qubit, indicated by the reflection of the photons off the qubit. Usually, the qubit resonance is centered around a very narrow range of frequencies.

"We measured a range of frequencies broader than the qubit frequency itself," said Forn-Diaz. "This means there is a very strong interaction between the qubit and the photons. It is so strong that the qubit is seeing most of the photons that propagate in the circuit, which is a distinctive signature of ultrastrong coupling in an open system."

###

This work was carried out in a collaboration between the Waterloo-based experimental groups of Adrian Lupascu and Christopher Wilson. Both are faculty members in the departments Physics and Astronomy and Electrical and Computer Engineering, as well as IQC. The other authors of this work from IQC are Jean-Luc Orgiazzi, Muhammet Ali Yurtulan, PhD students, and Ron Belyansky, undergraduate research assistant. The project was carried out in collaboration with Juan Jose Garcia-Ripoll, PhD, from the Instituto de Física Fundamental in Madrid, Spain, and Borja Peropadre, PhD, from Harvard University.

Media Contact

Pamela Smyth
psmyth@uwaterloo.ca
519-888-4777

 @uWaterlooNews

http://www.uwaterloo.ca/ 

Pamela Smyth | EurekAlert!

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>