Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water Could Hold Answer to Graphene Nanoelectronics

27.10.2010
Researchers at Rensselaer Polytechnic Institute Use Water to Open, Tune Graphene’s Band Gap

Researchers at Rensselaer Polytechnic Institute developed a new method for using water to tune the band gap of the nanomaterial graphene, opening the door to new graphene-based transistors and nanoelectronics.

By exposing a graphene film to humidity, Rensselaer Professor Nikhil Koratkar and his research team were able to create a band gap in graphene — a critical prerequisite to creating graphene transistors. At the heart of modern electronics, transistors are devices that can be switched “on” or “off” to alter an electrical signal. Computer microprocessors are comprised of millions of transistors made from the semiconducting material silicon, for which the industry is actively seeking a successor.

Graphene, an atom-thick sheet of carbon atoms arranged like a nanoscale chain-link fence, has no band gap. Koratkar’s team demonstrated how to open a band gap in graphene based on the amount of water they adsorbed to one side of the material, precisely tuning the band gap to any value from 0 to 0.2 electron volts. This effect was fully reversible and the band gap reduced back to zero under vacuum. The technique does not involve any complicated engineering or modification of the graphene, but requires an enclosure where humidity can be precisely controlled.

“Graphene is prized for its unique and attractive mechanical properties. But if you were to build a transistor using graphene, it simply wouldn’t work as graphene acts like a semi-metal and has zero band gap,” said Koratkar, a professor in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer. “In this study, we demonstrated a relatively easy method for giving graphene a band gap. This could open the door to using graphene for a new generation of transistors, diodes, nanoelectronics, nanophotonics, and other applications.”

Results of the study were detailed in the paper “Tunable Band gap in Graphene by the Controlled Adsorbtion of Water Molecules,” published this week by the journal Small. See the full paper at: http://dx.doi.org/10.1002/smll.201001384

In its natural state, graphene has a peculiar structure but no band gap. It behaves as a metal and is known as a good conductor. This is compared to rubber or most plastics, which are insulators and do not conduct electricity. Insulators have a large band gap — an energy gap between the valence and conduction bands — which prevents electrons from conducting freely in the material.

Between the two are semiconductors, which can function as both a conductor and an insulator. Semiconductors have a narrow band gap, and application of an electric field can provoke electrons to jump across the gap. The ability to quickly switch between the two states — “on” and “off” — is why semiconductors are so valuable in microelectronics.

“At the heart of any semiconductor device is a material with a band gap,” Koratkar said. “If you look at the chips and microprocessors in today’s cell phones, mobile devices, and computers, each contains a multitude of transistors made from semiconductors with band gaps. Graphene is a zero band gap material, which limits its utility. So it is critical to develop methods to induce a band gap in graphene to make it a relevant semiconducting material.”

The symmetry of graphene’s lattice structure has been identified as a reason for the material’s lack of band gap. Koratkar explored the idea of breaking this symmetry by binding molecules to only one side of the graphene. To do this, he fabricated graphene on a surface of silicon and silicon dioxide, and then exposed the graphene to an environmental chamber with controlled humidity. In the chamber, water molecules adsorbed to the exposed side of the graphene, but not on the side facing the silicon dioxide. With the symmetry broken, the band gap of graphene did, indeed, open up, Koratkar said. Also contributing to the effect is the moisture interacting with defects in the silicon dioxide substrate.

“Others have shown how to create a band gap in graphene by adsorbing different gasses to its surface, but this is the first time it has been done with water,” he said. “The advantage of water adsorption, compared to gasses, is that it is inexpensive, nontoxic, and much easier to control in a chip application. For example, with advances in micro-packaging technologies it is relatively straightforward to construct a small enclosure around certain parts or the entirety of a computer chip in which it would be quite easy to control the level of humidity.”

Based on the humidity level in the enclosure, chip makers could reversibly tune the band gap of graphene to any value from 0 to 0.2 electron volts, Korarkar said.

Along with Koratkar, authors on the paper are Theodorian Borca-Tasciuc, associate professor in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer; Rensselaer mechanical engineering graduate student Fazel Yavari, who was first author on the paper; Rensselaer Focus Center New York Postdoctoral Research Associate Churamani Gaire; and undergraduate student Christo Kritzinger. Co-authors from Rice University are Professor Pulickel M. Ajayan; Postdoctoral Research Fellow Li Song; and graduate student Hemtej Gulapalli.

This study was supported by the Advanced Energy Consortium (AEC), National Institute of Standards and Technology (NIST) Nanoelectronics Research Initiative, and the U.S. Department of Energy Office of Basic Energy Sciences (BES).

For more information on Koratkar’s graphene research at Rensselaer, visit:

Graphene Outperforms Carbon Nanotubes for Creating Stronger, More Crack-Resistant Materials | http://news.rpi.edu/update.do?artcenterkey=2715
Rensselaer Researchers Secure $1 Million Grant To Develop Oil Exploration Game-Changer | http://news.rpi.edu/update.do?artcenterkey=2700
Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage | http://news.rpi.edu/update.do?artcenterkey=2690

Koratkar also was recently appointed as the editor of the journal Carbon: http://www.elsevier.com/wps/find/P10.cws_home/carbon_neweditors

Published October 26, 2010 Contact: Michael Mullaney
Phone: (518) 276-6161
E-mail: mullam@rpi.edu

Michael Mullaney | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>