Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Water Could Hold Answer to Graphene Nanoelectronics

Researchers at Rensselaer Polytechnic Institute Use Water to Open, Tune Graphene’s Band Gap

Researchers at Rensselaer Polytechnic Institute developed a new method for using water to tune the band gap of the nanomaterial graphene, opening the door to new graphene-based transistors and nanoelectronics.

By exposing a graphene film to humidity, Rensselaer Professor Nikhil Koratkar and his research team were able to create a band gap in graphene — a critical prerequisite to creating graphene transistors. At the heart of modern electronics, transistors are devices that can be switched “on” or “off” to alter an electrical signal. Computer microprocessors are comprised of millions of transistors made from the semiconducting material silicon, for which the industry is actively seeking a successor.

Graphene, an atom-thick sheet of carbon atoms arranged like a nanoscale chain-link fence, has no band gap. Koratkar’s team demonstrated how to open a band gap in graphene based on the amount of water they adsorbed to one side of the material, precisely tuning the band gap to any value from 0 to 0.2 electron volts. This effect was fully reversible and the band gap reduced back to zero under vacuum. The technique does not involve any complicated engineering or modification of the graphene, but requires an enclosure where humidity can be precisely controlled.

“Graphene is prized for its unique and attractive mechanical properties. But if you were to build a transistor using graphene, it simply wouldn’t work as graphene acts like a semi-metal and has zero band gap,” said Koratkar, a professor in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer. “In this study, we demonstrated a relatively easy method for giving graphene a band gap. This could open the door to using graphene for a new generation of transistors, diodes, nanoelectronics, nanophotonics, and other applications.”

Results of the study were detailed in the paper “Tunable Band gap in Graphene by the Controlled Adsorbtion of Water Molecules,” published this week by the journal Small. See the full paper at:

In its natural state, graphene has a peculiar structure but no band gap. It behaves as a metal and is known as a good conductor. This is compared to rubber or most plastics, which are insulators and do not conduct electricity. Insulators have a large band gap — an energy gap between the valence and conduction bands — which prevents electrons from conducting freely in the material.

Between the two are semiconductors, which can function as both a conductor and an insulator. Semiconductors have a narrow band gap, and application of an electric field can provoke electrons to jump across the gap. The ability to quickly switch between the two states — “on” and “off” — is why semiconductors are so valuable in microelectronics.

“At the heart of any semiconductor device is a material with a band gap,” Koratkar said. “If you look at the chips and microprocessors in today’s cell phones, mobile devices, and computers, each contains a multitude of transistors made from semiconductors with band gaps. Graphene is a zero band gap material, which limits its utility. So it is critical to develop methods to induce a band gap in graphene to make it a relevant semiconducting material.”

The symmetry of graphene’s lattice structure has been identified as a reason for the material’s lack of band gap. Koratkar explored the idea of breaking this symmetry by binding molecules to only one side of the graphene. To do this, he fabricated graphene on a surface of silicon and silicon dioxide, and then exposed the graphene to an environmental chamber with controlled humidity. In the chamber, water molecules adsorbed to the exposed side of the graphene, but not on the side facing the silicon dioxide. With the symmetry broken, the band gap of graphene did, indeed, open up, Koratkar said. Also contributing to the effect is the moisture interacting with defects in the silicon dioxide substrate.

“Others have shown how to create a band gap in graphene by adsorbing different gasses to its surface, but this is the first time it has been done with water,” he said. “The advantage of water adsorption, compared to gasses, is that it is inexpensive, nontoxic, and much easier to control in a chip application. For example, with advances in micro-packaging technologies it is relatively straightforward to construct a small enclosure around certain parts or the entirety of a computer chip in which it would be quite easy to control the level of humidity.”

Based on the humidity level in the enclosure, chip makers could reversibly tune the band gap of graphene to any value from 0 to 0.2 electron volts, Korarkar said.

Along with Koratkar, authors on the paper are Theodorian Borca-Tasciuc, associate professor in the Department of Mechanical, Aerospace, and Nuclear Engineering at Rensselaer; Rensselaer mechanical engineering graduate student Fazel Yavari, who was first author on the paper; Rensselaer Focus Center New York Postdoctoral Research Associate Churamani Gaire; and undergraduate student Christo Kritzinger. Co-authors from Rice University are Professor Pulickel M. Ajayan; Postdoctoral Research Fellow Li Song; and graduate student Hemtej Gulapalli.

This study was supported by the Advanced Energy Consortium (AEC), National Institute of Standards and Technology (NIST) Nanoelectronics Research Initiative, and the U.S. Department of Energy Office of Basic Energy Sciences (BES).

For more information on Koratkar’s graphene research at Rensselaer, visit:

Graphene Outperforms Carbon Nanotubes for Creating Stronger, More Crack-Resistant Materials |
Rensselaer Researchers Secure $1 Million Grant To Develop Oil Exploration Game-Changer |
Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage |

Koratkar also was recently appointed as the editor of the journal Carbon:

Published October 26, 2010 Contact: Michael Mullaney
Phone: (518) 276-6161

Michael Mullaney | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>