Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching Schrödinger's cat die (or come to life)

31.07.2014

Steering quantum evolution & using probes to conduct continuous error correction in quantum computers

One of the famous examples of the weirdness of quantum mechanics is the paradox of Schrödinger's cat.

Quantum Trajectories

Continuous monitoring of a quantum system can direct the quantum state along a random path. This three-dimensional map shows how scientists tracked the transition between two qubit states many times to determine the optimal path.

Credit: Irfan Siddiqi, UC Berkeley

If you put a cat inside an opaque box and make his life dependent on a random event, when does the cat die? When the random event occurs, or when you open the box?

Though common sense suggests the former, quantum mechanics – or at least the most common "Copenhagen" interpretation enunciated by Danish physicist Neils Bohr in the 1920s – says it's the latter. Someone has to observe the result before it becomes final. Until then, paradoxically, the cat is both dead and alive at the same time.

University of California, Berkeley, physicists have for the first time showed that, in fact, it's possible to follow the metaphorical cat through the whole process, whether he lives or dies in the end.

"Gently recording the cat's paw prints both makes it die, or come to life, as the case may be, and allows us to reconstruct its life history," said Irfan Siddiqi, UC Berkeley associate professor of physics, who is senior author of a cover article describing the result in the July 31 issue of the journal Nature.

The Schrödinger's cat paradox is a critical issue in quantum computers, where the input is an entanglement of states – like the cat's entangled life and death– yet the answer to whether the animal is dead or alive has to be definite.

"To Bohr and others, the process was instantaneous – when you opened the box, the entangled system collapsed into a definite, classical state. This postulate stirred debate in quantum mechanics," Siddiqi said. "But real-time tracking of a quantum system shows that it's a continuous process, and that we can constantly extract information from the system as it goes from quantum to classical. This level of detail was never considered accessible by the original founders of quantum theory."

For quantum computers, this would allow continuous error correction. The real world, everything from light and heat to vibration, can knock a quantum system out of its quantum state into a real-world, so-called classical state, like opening the box to look at the cat and forcing it to be either dead or alive. A big question regarding quantum computers, Siddiqi said, is whether you can extract information without destroying the quantum system entirely.

"This gets around that fundamental problem in a very natural way," he said. "We can continuously probe a system very gently to get a little bit of information and continuously correct it, nudging it back into line, toward the ultimate goal."

Being two opposing things at the same time

In the world of quantum physics, a system can be in two superposed states at the same time, as long as no one is observing. An observation perturbs the system and forces it into one or the other. Physicists say that the original entangled wave functions collapsed into a classical state.

In the past 10 years, theorists such as Andrew N. Jordan, professor of physics at the University of Rochester and coauthor of the Nature paper, have developed theories predicting the most likely way in which a quantum system will collapse.

"The Rochester team developed new mathematics to predict the most likely path with high accuracy, in the same way one would use Newtown's equations to predict the least cumbersome path of a ball rolling down a mountain," Siddiqi said. "The implications are significant, as now we can design control sequences to steer a system along a certain trajectory. For example, in chemistry one could use this to prefer certain products of a reaction over others."

Lead researcher Steve Weber, a graduate student in Siddiqi's group, and Siddiqi's former postdoctoral fellow Kater Murch, now an assistant professor of physics at Washington University in St. Louis, proved Jordan correct. They measured the trajectory of the wave function of a quantum circuit – a qubit, analogous to the bit in a normal computer – as it changed. The circuit, a superconducting pendulum, could be in two different energy states and was coupled to a second circuit to read out the final voltage, corresponding to the pendulum's frequency.

"If you did this experiment many, many times, measuring the road the system took each time and the states it went through, we could determine what the most likely path is," Siddiqi said. "Then we could design a control sequence to take the road we want to take for a given quantum evolution."

If you probed a chemical reaction in detail, for example, you could find the most likely path the reaction would take and design a way to steer the reaction to the products you want, not the most likely, Siddiqi said.

"The experiment demonstrates that, for any choice of final quantum state, the most likely or 'optimal path' connecting them in a given time can be found and predicted," Jordan said. "This verifies the theory and opens the way for active quantum control techniques."

###

The work was supported in part by the Office of Naval Research and the Office of the Director of National Intelligence (ODNI) of the Intelligence Advanced Research Projects Activity (IARPA), through the Army Research Office.

Robert Sanders | Eurek Alert!

More articles from Physics and Astronomy:

nachricht Discovery of an Extragalactic Hot Molecular Core
29.09.2016 | National Astronomical Observatory of Japan

nachricht Swiss space research reaches for the sky
29.09.2016 | Schweizerischer Nationalfonds SNF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>