Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching a tiny galaxy grow

09.02.2012
For the first time, astronomers have caught a so-called dwarf galaxy in the process of swallowing another, even smaller galaxy.
Whether such mergers are important in the formation of the tiniest galaxies has been the subject of debate among theoreticians. Now, thanks to research by two independent groups including MPIA researchers David Martínez-Delgado and Michelle Collins, there is empirical evidence that such mergers occur. The analyses draw on deep images from modestly sized telescopes, in an example for successful collaboration between amateur and professional astronomers.

In the widely accepted hierarchical model of galaxy evolution, much of galactic growth involves acts of cannibalism and large-scale mergers: pre-existing, smaller galaxies successively coalesce into larger pieces until large galaxies, the size of the Milky Way or even bigger, form. But before galaxies and their stars can merge, stars have to form in the first place.

This is thought to happen by gas gathering to form denser regions under the influence of its own gravity; once a critical density is reached, stars are born. Conceivably, the smallest galaxies, so-called dwarf galaxies, might form in this way directly, and might grow bigger as they incorporate new gas from their surroundings, processing the new material into stars. In this way, there would be growth without the need for mergers. And indeed, until now, no such mergers had been observed.

Now, two independent groups of researchers, one led by David Martínez-Delgado of the Max Planck Institute for Astronomy (MPIA), the other by Michael Rich of UCLA, have identified the first confirmed example for a galaxy merger between very small galaxies. They found convincing evidence that a small companion of the dwarf galaxy NGC 4449 in the constellation Canis Venatici, first identified in 2007, is indeed another, smaller dwarf galaxy in the process of being disrupted by its larger neighbour – prior to being swallowed up.

Martínez-Delgado says: "A number of models predict that dwarfs should eat dwarfs. But this is the first clear example of such a feast that has been actually observed: We've found a key piece of the puzzle of galaxy evolution. Also, the fact that NGC 4449 is quite close to us shows that processes like this are still happening. They need to be taken into account if we want to describe our cosmic neighbourhood."

MPIA's Michelle Collins, who worked with Michael Rich on analyzing the dwarf galaxy's shape, adds: "Knowing what a half-digested dwarf galaxy looks like should help us find additional examples of dwarfs eating dwarfs. Finding a fair number of examples should put our models of the first stages of galactic growth on a firm footing – or show what we're missing."

Mass estimates for the distorted dwarf suggest that it contains significant amounts of Dark Matter, which does not emit light and only interacts with ordinary, atomic matter via gravity. If so, then this pairing could be a rare glimpse of a "stealth merger" – a galaxy's merger with a low-brightness object that is difficult to observe directly, yet, due to its high mass, can have a major influence on the receiving galaxy's shape, size and dynamics.

Both groups' examinations of the smaller dwarf galaxy's basic properties was performed with modest-scale instruments in cooperation with amateur astronomers: Rich et al. used the Saturn Lodge 0.7m telescope on the grounds of the Polaris Observatory Association for observations May-June 2011, while Martínez-Delgado et al. used Jay GaBany's 0.5 m telescope at Black Bird Observatory for observations between April 2010 and January 2011. Martínez-Delgado et al. followed up with detailed observations using the SUBARU telescope on Hawai'i in January 2011, obtaining images in which the smaller galaxy's haze is resolved into separate stars.

The paper by Rich et al. will appear in the February 9, 2012 issue of the journal Nature. The paper by Martínez-Delgado et al. is in press at the Astrophysical Journal Letters.

Contact

David Martínez-Delgado (Science contact)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 455
Email: delgado@mpia.de

Michelle Collins (Science contact)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 360
Email: collins@mpia.de

Markus Pössel (Public relations)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 261
Email: pr@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>