Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Wasteful' galaxies launch heavy elements into surrounding halos and deep space


Galaxies "waste" large amounts of heavy elements generated by star formation by ejecting them up to a million light years away into their surrounding halos and deep space, according to a new study led by the University of Colorado Boulder.

The research, which was recently published online in the Monthly Notices of the Royal Astronomical Society, shows that more oxygen, carbon and iron atoms exist in the sprawling, gaseous halos outside of galaxies than exist within the galaxies themselves, leaving the galaxies deprived of raw materials needed to build stars and planets.

Spiral galaxies like the Milky Way are shown in the center, surrounded by the circumgalactic medium, which appears as black to our eyes. However, the circumgalactic medium contains very hot gas, shown in red, orange, and white that outweighs the central galaxies. The Cosmic Origins Spectrograph on the Hubble Space Telescope is an ultra-violet spectrograph that can probe these gaseous filaments and clumps.

Credit: Adrien Thob, LJMU

"Previously, we thought that these heavier elements would be recycled in to future generations of stars and contribute to building planetary systems," said Benjamin Oppenheimer, a research associate in the Center for Astrophysics & Space Astronomy (CASA) at CU-Boulder and lead author of the study. "As it turns out, galaxies aren't very good at recycling."

The near-invisible reservoir of gas that surrounds a galaxy, known as the circumgalactic medium (CGM), is thought to play a central role in cycling elements in and out of the galaxy, but the exact mechanisms of this relationship remain elusive. A typical galaxy ranges in size from 30,000 to 100,000 light years while the CGM can span up to a million light years.

The researchers used data from the Cosmic Origin Spectrograph (COS), a $70 million instrument designed at CU-Boulder and built by Boulder, Colorado-based Ball Aerospace Technology Corp., to study the composition of the CGM.

COS is installed on NASA's Hubble Space Telescope and uses ultraviolet spectroscopy to study the evolution of the universe.

Spiral galaxies like the Milky Way actively form stars and have a blueish color while elliptical galaxies have little star formation and appear red. Both types of galaxies contain tens to hundreds of billions of stars that create heavy elements.

After running a series of simulations, the researchers found that the CGMs in both types of galaxies contained more than half of a galaxy's heavier elements, suggesting that galaxies are not as efficient at retaining their raw materials as previously thought.

"The remarkable similarity of the galaxies in our simulations to those targeted by the COS team enables us to interpret the observations with greater confidence," said Robert Crain, a Royal Society University Research Fellow at Liverpool John Moores University and a co-author of the study.

The new simulations also explain the puzzling COS observation that there appears to be less oxygen around elliptical than spiral galaxies.

"The CGM of the elliptical galaxies is hotter," said Joop Schaye, a professor at Leiden University in the Netherlands and a co-author of the study. "The high temperatures, topping over one million degrees Kelvin, reduce the fraction of the oxygen that is five times ionized, which is the ion observed by COS."

By contrast, the temperature of the CGM gas in spiral galaxies is 300,000 degrees Kelvin, or around fifty times hotter than the surface of the Sun.

"It takes massive amounts of energy from exploding supernovae and supermassive black holes to launch all these heavy elements into the CGM," said Oppenheimer. "This is a violent and long-lasting process that can take over 10 billion years, which means that in a galaxy like the Milky Way, this highly ionized oxygen we're observing has been there since before the Sun was born."


Co-authors of the manuscript "Bimodality of low-redshift circumgalactic O VI in non-equilibrium EAGLE zoom simulations" include Alireza Rahmati of the University of Zurich (Switzerland); Alexander Richings of Northwestern University; James Trayford, Richard Bower, Matthieu Schaller and Tom Theuns of Durham University (United Kingdom); and Jason Tumlinson of the Space Telescope Science Institute in Baltimore, Maryland.

Benjamin Oppenheimer | EurekAlert!

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>