Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Warming up to the Casimir force

The Casimir force between objects in a vacuum shows a complex dependence on temperature

When two uncharged objects are placed in a vacuum with no external fields, we wouldn’t expect them to have any force between them other than gravity. Quantum electrodynamics says otherwise. It shows that tiny quantum oscillations in the vacuum will give rise to an attraction called the Casimir force.

Scientists at the RIKEN Advanced Science Institute in Wako, and co-workers at the National Academy of Sciences of Ukraine (NASU), have shown for the first time that the Casimir force has a complex dependence on temperature1. They propose a related experiment that could clarify the theory around this important interaction, which has widespread applications in physics and astronomy, and could eventually be exploited in nano-sized electrical and mechanical systems.

“The Casimir force is one of the most interesting macroscopic effects of vacuum oscillations in a quantum electromagnetic field,” says Franco Nori from RIKEN and the University of Michigan in the USA. “It arises because the presence of objects, especially conducting metals, alters the quantum fluctuations in the vacuum.”

The Casimir force was first predicted in 1948, but has only recently been measured in the laboratory because experiments are difficult—the force is negligible except when the distance between objects is very small. More experiments are needed to understand how the force depends on temperature, an important practical consideration.

“As the temperature increases, metal objects in a vacuum experience two competing effects,” explains Sergey Savel’ev from RIKEN and Loughborough University in the UK. “They lose some of their electrical conductivity, which tends to cause a decrease in the Casimir force. At the same time they are bombarded with more radiation pressure from the thermal heat waves, and this increases the Casimir force.”

Nori and co-workers derived the temperature dependence for Casimir attractions between a thin film and a thick flat plate, and between a thin film and a large metal sphere. They found that the Casimir force will tend to decrease near room temperature, but can increase again at higher temperatures as the thermal radiation effects take over.

RIKEN’s Valery Yampol’skii, who also works at NASU, says that “if these temperature effects were observed in an experiment, they would resolve some fundamental questions about electron relaxation in a vacuum”. Such an experiment would be near-impossible with pieces of bulk metal, but could be done using extremely thin metal films.

1. Yampol’skii, V.A., Savel’ev, S., Mayselis, Z.A., Apostolov, S.S. & Nori, F. Anomalous temperature dependence of the Casimir force for thin metal films. Physical Review Letters 101, 096803 (2008).

The corresponding author for this highlight is based at the RIKEN Digital Materials Team

Saeko Okada | ResearchSEA
Further information:

More articles from Physics and Astronomy:

nachricht Gamma ray camera offers new view on ultra-high energy electrons in plasma
28.10.2016 | American Physical Society

nachricht Scientists measure how ions bombard fusion device walls
28.10.2016 | American Physical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>