Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wandering heat: Anomalous heat distribution in one-dimensional systems

12.02.2014
According to Fourier’s law, heat spreads evenly throughout a system. For two- and one-dimensional objects such as films or the finest of wires, however, other rules seem to apply. NIM scientists have now pinned these down.

Just as ember spreads through a piece of coal, heat principally diffuses at a constant rate. The corresponding physical law known as Fourier’s law was already established 200 years ago.


Uniform spreading of heat ceases in low dimensions

Later, scientists came to the conclusion that other rules must apply to the distribution of heat in two- or one-dimensional objects such as films or very fine wires. Respective evidence was provided, for example, by experiments with carbon nanotubes or organic molecular chains, where thermal conductivity was not only dependent on the object’s material but also on its size, or rather its length.

This means that in some materials thermal conductivity increases with the object’s length, while in others it decreases. However, no one has so far been able to derive a physical law similar to Fourier’s law from these observations.

Together with international colleagues, NIM physicist Prof. Peter Hänggi (University of Augsburg) and his team have now gone one step further in the quest for such a law. The scientists have for the first time established a universally valid mathematical connection between object-size-dependent thermal conductivity and the corresponding anomalous rate of heat diffusion.

The insights thus gained allow scientists to devise hybrid materials which display entirely new thermal properties in one- or two-dimensional form. They exploit the fact that in these cases the rate of heat diffusion can be very high in some material compositions and extremely low in others. This is to say that one material allows heat to travel through it very quickly, while another functions as thermal insulator. The theoretical calculations are of particular interest for objects at nanoscale, whose thermal behavior is hard to measure in experiments. Currently, nanostructures composed of carbon materials which are to serve as phononic diodes or heat storage systems (memory) are simulated by computer models. Analogous to electronic components, these elements can then be used to conduct information processing.

“The exploration of heat diffusion in low-scale dimensions is only just beginning and certainly holds many surprises – as well as a huge potential”, explains Peter Hänggi. “The ubiquitous detrimental thermal losses, for example, can be used to beneficial effect for functional materials or phononic information processing. Maybe, in the distant future, the dream of a computer functioning with waste heat will come true.”

Publication:

Anomalous Heat Diffusion by Sha Liu, Peter Hänggi, Nianbei Li, Jie Ren, and Baowen Li. Phys. Rev. Lett. 112: 040601 (2014)

http://prl.aps.org/abstract/PRL/v112/i4/e040601

Contact person:

Prof. Peter Hänggi
Chair of Theoretical Physics I
Institute of Physics
University of Augsburg
86135 Augsburg, Germany
Tel: +49 821 598-3250
Hanggi@physik.uni-augsburg.de

Klaus P. Prem | idw
Further information:
http://www.nano-initiative-munich.de
http://www.uni-augsburg.de

More articles from Physics and Astronomy:

nachricht New record in materials research: 1 terapascals in a laboratory
22.07.2016 | Universität Bayreuth

nachricht Mapping electromagnetic waveforms
22.07.2016 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>