Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wandering heat: Anomalous heat distribution in one-dimensional systems

12.02.2014
According to Fourier’s law, heat spreads evenly throughout a system. For two- and one-dimensional objects such as films or the finest of wires, however, other rules seem to apply. NIM scientists have now pinned these down.

Just as ember spreads through a piece of coal, heat principally diffuses at a constant rate. The corresponding physical law known as Fourier’s law was already established 200 years ago.


Uniform spreading of heat ceases in low dimensions

Later, scientists came to the conclusion that other rules must apply to the distribution of heat in two- or one-dimensional objects such as films or very fine wires. Respective evidence was provided, for example, by experiments with carbon nanotubes or organic molecular chains, where thermal conductivity was not only dependent on the object’s material but also on its size, or rather its length.

This means that in some materials thermal conductivity increases with the object’s length, while in others it decreases. However, no one has so far been able to derive a physical law similar to Fourier’s law from these observations.

Together with international colleagues, NIM physicist Prof. Peter Hänggi (University of Augsburg) and his team have now gone one step further in the quest for such a law. The scientists have for the first time established a universally valid mathematical connection between object-size-dependent thermal conductivity and the corresponding anomalous rate of heat diffusion.

The insights thus gained allow scientists to devise hybrid materials which display entirely new thermal properties in one- or two-dimensional form. They exploit the fact that in these cases the rate of heat diffusion can be very high in some material compositions and extremely low in others. This is to say that one material allows heat to travel through it very quickly, while another functions as thermal insulator. The theoretical calculations are of particular interest for objects at nanoscale, whose thermal behavior is hard to measure in experiments. Currently, nanostructures composed of carbon materials which are to serve as phononic diodes or heat storage systems (memory) are simulated by computer models. Analogous to electronic components, these elements can then be used to conduct information processing.

“The exploration of heat diffusion in low-scale dimensions is only just beginning and certainly holds many surprises – as well as a huge potential”, explains Peter Hänggi. “The ubiquitous detrimental thermal losses, for example, can be used to beneficial effect for functional materials or phononic information processing. Maybe, in the distant future, the dream of a computer functioning with waste heat will come true.”

Publication:

Anomalous Heat Diffusion by Sha Liu, Peter Hänggi, Nianbei Li, Jie Ren, and Baowen Li. Phys. Rev. Lett. 112: 040601 (2014)

http://prl.aps.org/abstract/PRL/v112/i4/e040601

Contact person:

Prof. Peter Hänggi
Chair of Theoretical Physics I
Institute of Physics
University of Augsburg
86135 Augsburg, Germany
Tel: +49 821 598-3250
Hanggi@physik.uni-augsburg.de

Klaus P. Prem | idw
Further information:
http://www.nano-initiative-munich.de
http://www.uni-augsburg.de

More articles from Physics and Astronomy:

nachricht Treasure hunting in archive data reveals clues about black holes’ diet
23.07.2015 | Max-Planck-Institut für extraterrestrische Physik, Garching

nachricht An easy, scalable and direct method for synthesizing graphene in silicon microelectronics
22.07.2015 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Young Scientist Discovers Magnetic Material Unnecessary to Create Spin Current

27.07.2015 | Materials Sciences

Superfast fluorescence sets new speed record

27.07.2015 | Information Technology

Ultra-Thin Hollow Nanocages Could Reduce Platinum Use in Fuel Cell Electrodes

27.07.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>