Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walk the line

30.09.2015

NASA studies physical performance after spaceflight

Walking an obstacle course on Earth is relatively easy. Walking an obstacle course on Earth after being in space for six months is not quite as simple. The longer an astronaut spends in space, the more difficult it is for their brain to readapt to gravity. Astronauts returning to Earth after living aboard the International Space Station for that amount of time have exhibited balance control problems, muscle weakness and cardiovascular deconditioning.


Expedition 43 Italian astronaut Samantha Cristoforetti from European Space Agency (ESA) is helped out of the Soyuz TMA-15M spacecraft just minutes after she landed in a remote area in Kazakhstan on Thursday, June 11, 2015.

Credit: NASA

It could take about six months to get to Mars, and when the crew suddenly returns to gravity on the Red Planet, they will have to land their spacecraft safely while possibly experiencing physical performance problems. Researchers are working to solve this problem so crew members can land . . . and then stand.

A study analyzing the balance control disturbances caused by gravity (g) transitions was recently completed by Jacob Bloomberg, a senior research scientist at NASA. Bloomberg and his team evaluated test subjects who have undergone body unloading, or not carrying one's own weight, after returning from space shuttle missions, space station expeditions or from bed rest studies of up to 70 days.

To test just how much body unloading affects balance and stability, Bloomberg and his team developed the Functional Task Test (FTT), which identifies mission critical tasks that may impact astronauts' movement and performance immediately after g-transitions. The FTT consists of seven functional and physiological tests.

"These tests are very operation-oriented and are related to different aspects of the mission and activities an astronaut would need to do after landing on the surface of Mars," Bloomberg said.

With balance control impairment comes hand-eye coordination problems, loss of postural stability or steadiness, and vision and perception issues. Motion sickness is often a problem as well. After landing, these impairments can make it difficult for crew members to begin necessary operations, such as walking from their landing craft to their habitat.

At the conclusion of the bed rest study, subjects were asked to perform the FTT. Researchers found FTT functions that involved postural stability were the most difficult for participants. These results help us understand that astronauts, without countermeasures or balance training, may have difficulty maintaining balance control when landing on Mars, which has 62 percent lower gravity than Earth.

The team is studying a countermeasure approach for balance control problems after landing. The countermeasures are done preflight and during flight, and the goal of this training is to help "train the brain to become more adaptable," Bloomberg said.

FTT also has benefits on Earth. These tests can benefit the elderly who often have challenges standing or walking after being in bed for a few days, by improving their balance control and stability. Patients on bed rest, people recovering from injury, and people with limited mobility also experience physical changes like those reported by crew members. Understanding how long it takes space travelers to recover from a long-duration stay in microgravity could also benefit patients on Earth with the design of clinical interventions and rehabilitation programs that could target specific systems responsible for a decline in functional performance.

Readapting to gravity after many months of space travel and being weightless is not easy for astronauts. By using the preflight and inflight training tools in development by Bloomberg and his team, crew members on a mission to Mars may transition back to gravity smoothly and land their spacecraft safely on the surface. As NASA unlocks the key to balance training, astronauts will be able to land on Mars, and stand and walk through their obstacle course with greater ease.

###

Related Video:

https://www.youtube.com/watch?v=04lrZeQOpNI

NASA's Human Research Program enables space exploration beyond low Earth orbit by reducing the risks to human health and performance through a focused program of basic, applied and operational research. This leads to the development and delivery of: human health, performance and habitability standards; countermeasures and risk mitigation solutions; and advanced habitability and medical support technologies for a more compatible world wherever we explore.

Monica Edwards | EurekAlert!

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>