Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Walk the line


NASA studies physical performance after spaceflight

Walking an obstacle course on Earth is relatively easy. Walking an obstacle course on Earth after being in space for six months is not quite as simple. The longer an astronaut spends in space, the more difficult it is for their brain to readapt to gravity. Astronauts returning to Earth after living aboard the International Space Station for that amount of time have exhibited balance control problems, muscle weakness and cardiovascular deconditioning.

Expedition 43 Italian astronaut Samantha Cristoforetti from European Space Agency (ESA) is helped out of the Soyuz TMA-15M spacecraft just minutes after she landed in a remote area in Kazakhstan on Thursday, June 11, 2015.

Credit: NASA

It could take about six months to get to Mars, and when the crew suddenly returns to gravity on the Red Planet, they will have to land their spacecraft safely while possibly experiencing physical performance problems. Researchers are working to solve this problem so crew members can land . . . and then stand.

A study analyzing the balance control disturbances caused by gravity (g) transitions was recently completed by Jacob Bloomberg, a senior research scientist at NASA. Bloomberg and his team evaluated test subjects who have undergone body unloading, or not carrying one's own weight, after returning from space shuttle missions, space station expeditions or from bed rest studies of up to 70 days.

To test just how much body unloading affects balance and stability, Bloomberg and his team developed the Functional Task Test (FTT), which identifies mission critical tasks that may impact astronauts' movement and performance immediately after g-transitions. The FTT consists of seven functional and physiological tests.

"These tests are very operation-oriented and are related to different aspects of the mission and activities an astronaut would need to do after landing on the surface of Mars," Bloomberg said.

With balance control impairment comes hand-eye coordination problems, loss of postural stability or steadiness, and vision and perception issues. Motion sickness is often a problem as well. After landing, these impairments can make it difficult for crew members to begin necessary operations, such as walking from their landing craft to their habitat.

At the conclusion of the bed rest study, subjects were asked to perform the FTT. Researchers found FTT functions that involved postural stability were the most difficult for participants. These results help us understand that astronauts, without countermeasures or balance training, may have difficulty maintaining balance control when landing on Mars, which has 62 percent lower gravity than Earth.

The team is studying a countermeasure approach for balance control problems after landing. The countermeasures are done preflight and during flight, and the goal of this training is to help "train the brain to become more adaptable," Bloomberg said.

FTT also has benefits on Earth. These tests can benefit the elderly who often have challenges standing or walking after being in bed for a few days, by improving their balance control and stability. Patients on bed rest, people recovering from injury, and people with limited mobility also experience physical changes like those reported by crew members. Understanding how long it takes space travelers to recover from a long-duration stay in microgravity could also benefit patients on Earth with the design of clinical interventions and rehabilitation programs that could target specific systems responsible for a decline in functional performance.

Readapting to gravity after many months of space travel and being weightless is not easy for astronauts. By using the preflight and inflight training tools in development by Bloomberg and his team, crew members on a mission to Mars may transition back to gravity smoothly and land their spacecraft safely on the surface. As NASA unlocks the key to balance training, astronauts will be able to land on Mars, and stand and walk through their obstacle course with greater ease.


Related Video:

NASA's Human Research Program enables space exploration beyond low Earth orbit by reducing the risks to human health and performance through a focused program of basic, applied and operational research. This leads to the development and delivery of: human health, performance and habitability standards; countermeasures and risk mitigation solutions; and advanced habitability and medical support technologies for a more compatible world wherever we explore.

Monica Edwards | EurekAlert!

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>