Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vulnerability in commercial quanto cryptography

30.08.2010
International collaboration tackles the problem

The Norwegian University of Science and Technology (NTNU) and the University of Erlangen-Nürnberg together with the Max Planck Institute for the Science of Light in Erlangen have recently developed and tested a technique exploiting imperfections in quantum cryptography systems to implement an attack.

Countermeasures were also implemented within an ongoing collaboration with leading manufacturer ID Quantique.

Quantum cryptography is a technology that allows one to distribute a cryptographic key across an optical network and to exploit the laws of quantum physics to guarantee its secrecy. It makes use of the Heisenberg uncertainty principle – observation causes perturbation – to reveal eavesdropping on an optical fiber.

The technology was invented in the mid-eighties, with first demonstration less than a decade later and the launch of commercial products during the first years of the century.

Although the security of quantum cryptography relies in principle only on the laws of quantum physics, it is also dependent on the lack of loopholes in specific implementations, just like any other security technology.

"The security of quantum cryptography relies on quantum physics but not only… It must also be properly implemented. This fact was often overlooked in the past," explains Prof. Gerd Leuchs of the University of Erlangen-Nürnberg and the Max Planck Institute for the Science of Light.

Recently, NTNU in collaboration with the team in Erlangen has found a technique to remotely control a key component of most of today's quantum cryptography systems, the photon detector, which is reported today in Nature Photonics advance online publication doi:10.1038/nphoton.2010.214.

"Unlike previously published attempts, this attack is imple-mentable with current off-the-shelf components," says Dr. Vadim Makarov, a researcher in the Quantum Hacking group at NTNU, who adds: "Our eavesdropping method worked both against MagiQ Technology's QPN 5505 and ID Quantique Clavis2 systems."

In the framework of a collaboration initiated with ID Quantique, the researchers shared their results with the company prior to publication. ID Quantique has then, with a help of NTNU, developed and tested a countermeasure.

Academic researchers of the two laboratories will continue testing security aspects of quantum cryptography solutions from ID Quantique. "Testing is a necessary step to validate a new security technology and the fact that this proc-ess is applied today to quantum cryptography is a sign of maturity for this technology," ex-plains Grégoire Ribordy, CEO of ID Quantique.

About the Quantum Hacking group

The Quantum Hacking group at the Department of Electronics and Telecommunications, Norwegian University of Science and Technology, works in the field of quantum cryptogra-phy, with the main goal to make quantum cryptosystems secure in practice. This is done by playing the role of the evil eavesdropper, and hacking practical systems by exploiting imperfections. Using these results, we propose modifications to the systems and new security proofs which take imperfections into account.

About the QIV group

The Quantum Information Processing group in Erlangen represents a close collaboration in the field of quantum communication between the University of Erlangen-Nürnberg and the Max Planck Institute for the Science of Light. One of the group's research focuses is research in quantum key distribution and operating a free-space link transmitting continuous-variables quantum information.

About ID Quantique

ID Quantique is a global leader shaping the evolution of network security through the devel-opment and commercialization of Quantum Key Distribution and high-speed encryption products. In 2001, the company was the first to bring this new technology to the market. In 2007, it was able to announce the first public application of this technology to secure a net-work used for vote counting in an election in Geneva. In addition to its strong technology fo-cus on Quantum Key Distribution, ID Quantique has also developed expertise in the area of high-speed encryption and has a broad portofolio of solutions for layer 2 encryption. A privately held company headquartered in Geneva, Switzerland, ID Quantique is a spin-off from the University of Geneva and has close ties with leading academic institutions.

For further information, contact:
Vadim Makarov, postdoctoral researcher, Department of Electronics and
Telecommunications, Norwegian University of Science and Technology
Email: makarov@vad1.com, tel. +47 73592733, mobile: +47 46795898
Quantum Hacking group: www.iet.ntnu.no/groups/optics/qcr/
Christoffer Wittmann, Max Planck Institute for the Science of Light,
Günther-Scharowsky-Str. 1/Bau 24, 91058 Erlangen, Germany
Email: christoffer.wittmann@mpl.mpg.de, tel. +49 9131 6877129
QIV-group: mpl.mpg.de/mpf/php/abteilung1/index.php?lang=en
Grégoire Ribordy, CEO, ID Quantique SA
Tel. +41 22 301 83 71, Mobile: +41 79 784 70 79
Email: gregoire.ribordy@idquantique.com www.idquantique.com

Vadim Makarov | EurekAlert!
Further information:
http://www.ntnu.edu/

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>