Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vulnerability in commercial quanto cryptography

30.08.2010
International collaboration tackles the problem

The Norwegian University of Science and Technology (NTNU) and the University of Erlangen-Nürnberg together with the Max Planck Institute for the Science of Light in Erlangen have recently developed and tested a technique exploiting imperfections in quantum cryptography systems to implement an attack.

Countermeasures were also implemented within an ongoing collaboration with leading manufacturer ID Quantique.

Quantum cryptography is a technology that allows one to distribute a cryptographic key across an optical network and to exploit the laws of quantum physics to guarantee its secrecy. It makes use of the Heisenberg uncertainty principle – observation causes perturbation – to reveal eavesdropping on an optical fiber.

The technology was invented in the mid-eighties, with first demonstration less than a decade later and the launch of commercial products during the first years of the century.

Although the security of quantum cryptography relies in principle only on the laws of quantum physics, it is also dependent on the lack of loopholes in specific implementations, just like any other security technology.

"The security of quantum cryptography relies on quantum physics but not only… It must also be properly implemented. This fact was often overlooked in the past," explains Prof. Gerd Leuchs of the University of Erlangen-Nürnberg and the Max Planck Institute for the Science of Light.

Recently, NTNU in collaboration with the team in Erlangen has found a technique to remotely control a key component of most of today's quantum cryptography systems, the photon detector, which is reported today in Nature Photonics advance online publication doi:10.1038/nphoton.2010.214.

"Unlike previously published attempts, this attack is imple-mentable with current off-the-shelf components," says Dr. Vadim Makarov, a researcher in the Quantum Hacking group at NTNU, who adds: "Our eavesdropping method worked both against MagiQ Technology's QPN 5505 and ID Quantique Clavis2 systems."

In the framework of a collaboration initiated with ID Quantique, the researchers shared their results with the company prior to publication. ID Quantique has then, with a help of NTNU, developed and tested a countermeasure.

Academic researchers of the two laboratories will continue testing security aspects of quantum cryptography solutions from ID Quantique. "Testing is a necessary step to validate a new security technology and the fact that this proc-ess is applied today to quantum cryptography is a sign of maturity for this technology," ex-plains Grégoire Ribordy, CEO of ID Quantique.

About the Quantum Hacking group

The Quantum Hacking group at the Department of Electronics and Telecommunications, Norwegian University of Science and Technology, works in the field of quantum cryptogra-phy, with the main goal to make quantum cryptosystems secure in practice. This is done by playing the role of the evil eavesdropper, and hacking practical systems by exploiting imperfections. Using these results, we propose modifications to the systems and new security proofs which take imperfections into account.

About the QIV group

The Quantum Information Processing group in Erlangen represents a close collaboration in the field of quantum communication between the University of Erlangen-Nürnberg and the Max Planck Institute for the Science of Light. One of the group's research focuses is research in quantum key distribution and operating a free-space link transmitting continuous-variables quantum information.

About ID Quantique

ID Quantique is a global leader shaping the evolution of network security through the devel-opment and commercialization of Quantum Key Distribution and high-speed encryption products. In 2001, the company was the first to bring this new technology to the market. In 2007, it was able to announce the first public application of this technology to secure a net-work used for vote counting in an election in Geneva. In addition to its strong technology fo-cus on Quantum Key Distribution, ID Quantique has also developed expertise in the area of high-speed encryption and has a broad portofolio of solutions for layer 2 encryption. A privately held company headquartered in Geneva, Switzerland, ID Quantique is a spin-off from the University of Geneva and has close ties with leading academic institutions.

For further information, contact:
Vadim Makarov, postdoctoral researcher, Department of Electronics and
Telecommunications, Norwegian University of Science and Technology
Email: makarov@vad1.com, tel. +47 73592733, mobile: +47 46795898
Quantum Hacking group: www.iet.ntnu.no/groups/optics/qcr/
Christoffer Wittmann, Max Planck Institute for the Science of Light,
Günther-Scharowsky-Str. 1/Bau 24, 91058 Erlangen, Germany
Email: christoffer.wittmann@mpl.mpg.de, tel. +49 9131 6877129
QIV-group: mpl.mpg.de/mpf/php/abteilung1/index.php?lang=en
Grégoire Ribordy, CEO, ID Quantique SA
Tel. +41 22 301 83 71, Mobile: +41 79 784 70 79
Email: gregoire.ribordy@idquantique.com www.idquantique.com

Vadim Makarov | EurekAlert!
Further information:
http://www.ntnu.edu/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>