Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vulnerability in commercial quanto cryptography

30.08.2010
International collaboration tackles the problem

The Norwegian University of Science and Technology (NTNU) and the University of Erlangen-Nürnberg together with the Max Planck Institute for the Science of Light in Erlangen have recently developed and tested a technique exploiting imperfections in quantum cryptography systems to implement an attack.

Countermeasures were also implemented within an ongoing collaboration with leading manufacturer ID Quantique.

Quantum cryptography is a technology that allows one to distribute a cryptographic key across an optical network and to exploit the laws of quantum physics to guarantee its secrecy. It makes use of the Heisenberg uncertainty principle – observation causes perturbation – to reveal eavesdropping on an optical fiber.

The technology was invented in the mid-eighties, with first demonstration less than a decade later and the launch of commercial products during the first years of the century.

Although the security of quantum cryptography relies in principle only on the laws of quantum physics, it is also dependent on the lack of loopholes in specific implementations, just like any other security technology.

"The security of quantum cryptography relies on quantum physics but not only… It must also be properly implemented. This fact was often overlooked in the past," explains Prof. Gerd Leuchs of the University of Erlangen-Nürnberg and the Max Planck Institute for the Science of Light.

Recently, NTNU in collaboration with the team in Erlangen has found a technique to remotely control a key component of most of today's quantum cryptography systems, the photon detector, which is reported today in Nature Photonics advance online publication doi:10.1038/nphoton.2010.214.

"Unlike previously published attempts, this attack is imple-mentable with current off-the-shelf components," says Dr. Vadim Makarov, a researcher in the Quantum Hacking group at NTNU, who adds: "Our eavesdropping method worked both against MagiQ Technology's QPN 5505 and ID Quantique Clavis2 systems."

In the framework of a collaboration initiated with ID Quantique, the researchers shared their results with the company prior to publication. ID Quantique has then, with a help of NTNU, developed and tested a countermeasure.

Academic researchers of the two laboratories will continue testing security aspects of quantum cryptography solutions from ID Quantique. "Testing is a necessary step to validate a new security technology and the fact that this proc-ess is applied today to quantum cryptography is a sign of maturity for this technology," ex-plains Grégoire Ribordy, CEO of ID Quantique.

About the Quantum Hacking group

The Quantum Hacking group at the Department of Electronics and Telecommunications, Norwegian University of Science and Technology, works in the field of quantum cryptogra-phy, with the main goal to make quantum cryptosystems secure in practice. This is done by playing the role of the evil eavesdropper, and hacking practical systems by exploiting imperfections. Using these results, we propose modifications to the systems and new security proofs which take imperfections into account.

About the QIV group

The Quantum Information Processing group in Erlangen represents a close collaboration in the field of quantum communication between the University of Erlangen-Nürnberg and the Max Planck Institute for the Science of Light. One of the group's research focuses is research in quantum key distribution and operating a free-space link transmitting continuous-variables quantum information.

About ID Quantique

ID Quantique is a global leader shaping the evolution of network security through the devel-opment and commercialization of Quantum Key Distribution and high-speed encryption products. In 2001, the company was the first to bring this new technology to the market. In 2007, it was able to announce the first public application of this technology to secure a net-work used for vote counting in an election in Geneva. In addition to its strong technology fo-cus on Quantum Key Distribution, ID Quantique has also developed expertise in the area of high-speed encryption and has a broad portofolio of solutions for layer 2 encryption. A privately held company headquartered in Geneva, Switzerland, ID Quantique is a spin-off from the University of Geneva and has close ties with leading academic institutions.

For further information, contact:
Vadim Makarov, postdoctoral researcher, Department of Electronics and
Telecommunications, Norwegian University of Science and Technology
Email: makarov@vad1.com, tel. +47 73592733, mobile: +47 46795898
Quantum Hacking group: www.iet.ntnu.no/groups/optics/qcr/
Christoffer Wittmann, Max Planck Institute for the Science of Light,
Günther-Scharowsky-Str. 1/Bau 24, 91058 Erlangen, Germany
Email: christoffer.wittmann@mpl.mpg.de, tel. +49 9131 6877129
QIV-group: mpl.mpg.de/mpf/php/abteilung1/index.php?lang=en
Grégoire Ribordy, CEO, ID Quantique SA
Tel. +41 22 301 83 71, Mobile: +41 79 784 70 79
Email: gregoire.ribordy@idquantique.com www.idquantique.com

Vadim Makarov | EurekAlert!
Further information:
http://www.ntnu.edu/

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>