Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vortex photons from electrons in circular motion

21.07.2017

An elementary process, in which a relativistic electron radiates vortex photons carrying orbital angular momentum, has been discovered -- are vortex photons ubiquitous in the universe?

Researchers at IMS and their coworkers have shown theoretically and experimentally that a high energy electron in circular/spiral motion radiates vortex photons in the entire wavelength range from the radio-wave to the gamma-rays.


UV radiation from a relativistic electron beam is diffracted by a double-slit. In contrast to the normal light (left), the diffraction shows a deformation in the central part (right), indicating the existence of the phase singularity, which is a definite evidence of the vortex nature.

Credit: INSTITUTE FOR MOLECULAR SCIENCE

This greatly broadens application spectra of the vortex photons in the field of physical science. Moreover, the finding indicates that vortex photons are ubiquitous in the universe. It paves a way to a completely new research field, natural vortex photon science.

Light is a wave. As sometimes it is called an electromagnetic wave, electric and magnetic fields are oscillating and the oscillations are propagating in space. Normally, light has a plane wave front. In contrast, optical vortex possesses helical wave front and carries orbital angular momentum. Existence of such peculiar photons was theoretically predicted about 25 years ago.

Nowadays, such photons can be readily produced in laboratories by using special optical devises, although the wavelengths are limited in the vicinity of the visible light. Researchers are exploring their applications in nanotechnology, imaging and information/communication technologies. On the other hand, a natural elementary process which is capable of producing vortex photons has not been known, except for a few theoretical proposals that normal photons may be converted to vortex photons in a strong gravitational field around a rotating black hall or as passing through inhomogeneous interstellar media.

About 10 years ago, it was theoretically predicted that an undulator, a device widely used in modern synchrotron light sources, is capable of producing vortex photons in the X-ray range. This was experimentally confirmed several years later at a German synchrotron. However, a majority of significant characteristics of optical vortex generation has remained unverified.

Researchers at IMS and their coworkers theoretically investigated this process and have found that it is based on a more general and elementary process. They have shown that an electron in circular or spiral motion radiates vortex photons. Since this process is the basis of various important radiation processes in the astrophysics or the plasma physics, such as cyclotron radiation, synchrotron radiation or Compton scattering, it has been described in many textbooks or research papers.

However, so far, there has been no discussion on the vortex nature of this radiation. The wavelength of this radiation extends from the radio wave to the gamma-rays, depending on the physical condition. This new finding indicates that vortex photons are produced in various situations in the universe, in the entire wavelength range.

Furthermore, the researchers at IMS and their coworkers succeeded in a precise experimental observation of the undulator radiation from a synchrotron light source, UVSOR-III, for the first time (Figure). They observed the UV light emitted from an electron beam in spiral motion, and indicated that a special structure called phase singularity exists in the center of the photon beam from the undulator. Moreover, higher energy photons have been shown to carry larger angular momenta. These measurements definitely support the theoretical prediction.

Professor Masahiro Katoh (IMS) says "Vortex photons should be ubiquitous in the universe. What kind of role do they play in nature? Our achievement opens up a totally new research field."

###

This research was supported by the Grants-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science.

*1 Synchrotron Radiation

Electromagnetic waves radiated by high energy electrons in a magnetic field.

*2 UVSOR-III

UVSOR-III is a synchrotron radiation facility providing high brightness UV and VUV radiations, located in IMS, Aichi Prefecture, Japan.

*3 Undulators

An undulator produces an alternating magnetic field and high energy electrons undergo sinusoidal or spiral motions and radiate monochromatic radiations.

Information of the paper: "Angular Momentum of Twisted Radiation from an Electron in Spiral Motion", Physical Review Letters,
"Helical Phase Structure of Radiation from an Electron in Circular Motion", Scientific Reports

Research Group: IMS (Institute for Molecular Science), Nagoya University, Hiroshima University, Muroran Institute of Technology, University of Tokyo, Saga Light Source, KEK (High Energy Accelerator Research Organization), AIST (National Institute of Advanced Industrial Science and Technology)

Financial Supports: Grants-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science

Media Contact

Masahiro Katoh
mkatoh@ims.ac.jp

http://www.nins.jp/english/ 

Masahiro Katoh | EurekAlert!

More articles from Physics and Astronomy:

nachricht Writing and deleting magnets with lasers
19.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ultrafast electron oscillation and dephasing monitored by attosecond light source
19.04.2018 | Yokohama National University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>