Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcano Loki Observed from Earth

04.05.2015

With the first detailed observations of a lava lake on a moon of Jupiter, the Large Binocular Telescope Observatory in Arizona places itself as the forerunner of the next generation of Extremely Large Telescopes. The applied high-resolution imaging methods were developed by an international research team including scientists from the Max Planck Institute for Radio Astronomy in Bonn and the Max Planck Institute for Astronomy in Heidelberg.

Io, the innermost of the four moons of Jupiter discovered by Galileo in January 1610, is only slightly bigger than our own Moon but is the most geologically active body in our solar system. Hundreds of volcanic areas dot its surface, which is mostly covered with sulfur and sulfur dioxide.


The LBT image of the Loki lava lake (orange) laid over a Voyager image of the same structure (dark shade).

LBTO / NASA


Jupiter's moon Io seen by LBT (left) compared to a NASA satellite image (right). The Loki lava lake shows up as dark red region on the LBT image. The circles mark the volcanos in the LBT image.

LBT Research Team

The largest of these volcanic features, named Loki after the Norse god often associated with fire and chaos, is a volcanic depression called patera in which the denser lava crust solidifying on top of a lava lake episodically sinks in the lake, yielding a raise in the thermal emission which has been regularly observed from Earth. Loki, only 200km in diameter and at least 600 million km from Earth, was, up to recently, too small to be looked at in details from any ground based optical/infrared telescope.

With its two 8.4 m mirrors set on the same mount 6 m apart, the Large Binocular Telescope (LBT) has been designed to ultimately provide images with the level of details a 22.8 m telescope would, by combining the light through interferometry. Thanks to the Large Binocular Telescope Interferometer (LBTI), an international team of researchers was able to look at Loki Patera in details for the first time from Earth in a study published today in the Astronomical Journal.

"We combine the light from two very large mirrors coherently so that they become a single, extremely large mirror,” says Al Conrad, the lead of the study and a Scientist at the Large Binocular Telescope Observatory (LBTO). “In this way, for the first time we can measure the brightness coming from different regions within the lake."

For Phil Hinz, who leads the LBTI project at the University of Arizona Steward Observatory, this result is the outcome of a nearly fifteen year development. "We built LBTI to form extremely sharp images. It is gratifying to see the system work so well." Phil notes that this is only one of the unique aspects of LBTI. "We built the system both to form sharp images and to detect dust and planets around nearby stars at extremely high dynamic range. The new result from LBTI is a great example of its potential."

LMIRcam, the camera recording the images at the very heart of LBTI in the 3 to 5 micrometers near-infrared band, was the thesis work of Jarron Leisenring as graduate student at the University of Virginia. For Jarron, now an instrument scientist for NIRCam (the Near InfraRed CAMera for the James Webb Space Telescope) at Steward Observatory, "these observations mark a major milestone for me and the instrument team. LMIRcam has already been very productive these past few years; now, interferometric combination provides the last step in harnessing LBTI’s full potential and enabling a whole host of new scientific opportunities."

Many raw images delivered by LMIRcam are combined to form a single high-resolution image. "LBTI raw images are crossed by interference fringes. Therefore, these raw images do not look very sharp", explains Gerd Weigelt, a Professor at the Max-Planck-Institut für Radioastronomie in Bonn, Germany. "However, modern image reconstruction methods, so-called deconvolution, allow us to overcome the interference fringes and achieve a spectacular image resolution.”

"Data processing based on deconvolution methods", adds Mario Bertero, a professor in Information Science at the University of Genova (Italy), "are basic for detecting details not directly distinguishable in the interferometric images. However they can generate artifacts and, for this reason, it is important to process the images with different methods for discriminating between relevant details and artifacts.”

"While we have seen bright emissions – always one unresolved spot – “pop-up” at different locations in Loki Patera over the years”, explains Imke de Pater, a Professor at the University of California in Berkeley, "these exquisite images from the LBTI show for the first time in ground based images that emissions arise simultaneously from different sites in Loki Patera. This strongly suggests that the horseshoe-shaped feature is most likely an active overturning lava lake, as hypothesized in the past.”

"Two of the volcanic features are at newly-active locations", explains Katherine de Kleer, a graduate student at the University of California at Berkeley. "They are located in a region called the Colchis Regio, where an enormous eruption took place just a few months earlier, and may represent the aftermath of that eruption. The high resolution of the LBTI allows us to resolve the residual activity in this region into specific active sites, which could be lava flows or nearby eruptions."

"Studying the very dynamic volcanic activity on Io, which is constantly reshaping the moon's surface, provides clues to the interior structure and plumbing of this moon," remarked team member Chick Woodward of the University of Minnesota. "It helps to pave the way for future NASA missions such as the Io Observer. Io's highly elliptical orbit close to Jupiter is constantly tidally stressing the moon, like the squeezing of a ripe orange, where the juice can escape through cracks in the peel."

For Christian Veillet, Director of the Large Binocular Telescope Observatory (LBTO), "this study marks a very important milestone for the Observatory. The unique feature of the binocular design of the telescope, originally proposed more than 25 years ago, is its ability to provide images with the level of detail (resolution) only a single-aperture telescope at least 22.7m in diameter could reach. The spectacular observations of Io published today are a tribute to the many who believed in the LBT concept and worked very hard over more than two decades to reach this milestone."

Veillet adds: "While there is still much work ahead to make the LBT/LBTI combination a fully operational instrument, we can safely state that the Large Binocular Telescope is truly a forerunner of the next generation of Extremely Large Telescopes slated to see first light in a decade (or more) from now."


The Large Binocular Telescope (LBT) is an international collaboration among institutions in the U.S., Italy and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota and University of Virginia. The Large Binocular Telescope Interferometer is funded by NASA as part of its Exoplanet Exploration program. LMIRcam is funded by the National Science Foundation through grant NSF AST-0705296. The research was partially supported by the National Science Foundation, NSF Grant AST-1313485 to UC Berkeley, and by the National Science Foundation Graduate Research Fellowship under Grant DGE-1106400.

The research team is led by Albert Conrad from the LBT Observatory (University of Arizona). Besides the local members Karl-Heinz Hofmann, Dieter Schertl and Gerd Weigelt (all Max Planck Institute for Radio Astronomy, Bonn) it comprises Katherine de Kleer and Imke de Pater (both University of California at Berkeley), Jarron Leisenring, Denis Defrère, Philip Hinz and Andy Skemer (all University of Arizona), Andrea la Camera, Mario Bertero and Patricia Boccacci (all DIBRIS, University of Genua), Carmelo Arcidiacono (INAF, Osservatorio Astronomico di Bologna), Martin Kürster (Max Planck Institute for Astronomy, Heidelberg), Julie Rathbun (Planetary Science Institute, Tucson), Michael Skrutskie (University of Virginia), John Spencer (Southwest Research Institute, Boulder), Christian Veillet (LBT Observatory) and Charles E. Woodward (Minnesota Institute for Astrophysics).

Original Paper:

Spatially resolved M-band emission from Io's Loki patera - Fizeau imaging at the 22.8m LBT, Albert Conrad et al., 2015, Astronomical Journal:
http://iopscience.iop.org/1538-3881/149/5/175/article
doi: 10.1088/0004-6256/149/5/175

Local Contact:

Prof. Dr. Gerd Weigelt,
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49-228-525-243
E-mail: gweigelt@mpifr-bonn.mpg.de

Dr. Karl-Heinz Hofmann
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49-228-525-290
E-mail: khh@mpifr-bonn.mpg.de

Dr. Dieter Schertl
Max-Planck-Institut für Radioastronomie, Bonn.
Fon: +49-228-525-301
E-mail: dschertl@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2015/5

Norbert Junkes | Max-Planck-Institut für Radioastronomie

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>