Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VLT observations of gamma-ray burst reveal surprising ingredients of early galaxies

02.11.2011
Gamma-ray bursts are the brightest explosions in the Universe [1]. They are first spotted by orbiting observatories that detect the initial short burst of gamma rays.

After their positions have been pinned down, they are then immediately studied using large ground-based telescopes that can detect the visible-light and infrared afterglows that the bursts emit over the succeeding hours and days.


This artist's impression shows two galaxies in the early universe. The brilliant explosion on the left is a gamma-ray burst. The light from the burst travels through both galaxies on its way to Earth (outside the frame to the right). Analysis of observations of the light from this gamma-ray burst made using ESO's Very Large Telescope have shown that these two galaxies are remarkably rich in heavier chemical elements. Credit: ESO/L. Calçada

One such burst, called GRB 090323 [2], was first spotted by the NASA Fermi Gamma-ray Space Telescope. Very soon afterwards it was picked up by the X-ray detector on NASA's Swift satellite and with the GROND system at the MPG/ESO 2.2-metre telescope in Chile (eso1049) and then studied in great detail using ESO's Very Large Telescope (VLT) just one day after it exploded.

The VLT observations show that the brilliant light from the gamma-ray burst had passed through its own host galaxy and another galaxy nearby. These galaxies are being seen as they were about 12 billion years ago [3]. Such distant galaxies are very rarely caught in the glare of a gamma-ray burst.

"When we studied the light from this gamma-ray burst we didn't know what we might find. It was a surprise that the cool gas in these two galaxies in the early Universe proved to have such an unexpected chemical make-up," explains Sandra Savaglio (Max-Planck Institute for Extraterrestrial Physics, Garching, Germany), lead author of the paper describing the new results. "These galaxies have more heavy elements than have ever been seen in a galaxy so early in the evolution of the Universe. We didn't expect the Universe to be so mature, so chemically evolved, so early on."

As light from the gamma-ray burst passed through the galaxies, the gas there acted like a filter, and absorbed some of the light from the gamma-ray burst at certain wavelengths. Without the gamma-ray burst these faint galaxies would be invisible. By carefully analysing the tell-tale fingerprints from different chemical elements the team was able to work out the composition of the cool gas in these very distant galaxies, and in particular how rich they were in heavy elements.

It is expected that galaxies in the young Universe will be found to contain smaller amounts of heavier elements than galaxies at the present day, such as the Milky Way. The heavier elements are produced during the lives and deaths of generations of stars, gradually enriching the gas in the galaxies [4]. Astronomers can use the chemical enrichment in galaxies to indicate how far they are through their lives. But the new observations, surprisingly, revealed that some galaxies were already very rich in heavy elements less than two billion years after the Big Bang. Something unthinkable until recently.

The newly discovered pair of young galaxies must be forming new stars at a tremendous rate, to enrich the cool gas so strongly and quickly. As the two galaxies are close to each other they may be in the process of merging, which would also provoke star formation when the gas clouds collide. The new results also support the idea that gamma-ray bursts may be associated with vigorous massive star formation.

Energetic star formation in galaxies like these might have ceased early on in the history of the Universe. Twelve billion years later, at the present time, the remains of such galaxies would contain a large number of stellar remnants such as black holes and cool dwarf stars, forming a hard to detect population of "dead galaxies", just faint shadows of how they were in their brilliant youths. Finding such corpses in the present day would be a challenge.

"We were very lucky to observe GRB 090323 when it was still sufficiently bright, so that it was possible to obtain spectacularly detailed observations with the VLT. Gamma-ray bursts only stay bright for a very short time and getting good quality data is very hard. We hope to observe these galaxies again in the future when we have much more sensitive instruments, they would make perfect targets for the E-ELT," concludes Savaglio.

Notes

[1] Gamma-ray bursts lasting longer than two seconds are referred to as long bursts and those with a shorter duration are known as short bursts. Long bursts, including the one in this study, are associated with supernova explosions of massive young stars in star-forming galaxies. Short bursts are not well understood, but are thought to originate from the merger of two compact objects such as neutron stars.

[2] The name refers to the date on which the burst was discovered, in this case it was spotted on 23 March 2009.

[3] The galaxies were seen at a redshift of 3.57, meaning that they are seen as they were 1.8 billion years after the Big Bang.

[4] The material produced by the Big Bang, 13.7 billion years ago, was almost entirely hydrogen and helium. Most heavier elements, such as oxygen, nitrogen and carbon, were produced later by thermonuclear reactions inside stars and fed back into the reserves of gas within galaxies as these stars die. So, it is expected that the amount of heavier elements in most galaxies gradually increases as the Universe ages.

More information

This research was presented in a paper "Super-solar Metal Abundances in Two Galaxies at z ~ 3.57 revealed by the GRB 090323 Afterglow Spectrum" to appear in Monthly Notices of the Royal Astronomical Society.

The team is composed of S. Savaglio (Max Planck Institute for Extraterrestrial Physics, Garching bei München, Germany [MPE]), A. Rau (MPE), J. Greiner (MPE), T. Krüler (MPE; Technische Universität München, Garching, Germany [TUM]; Dark Cosmology Centre, University of Copenhagen, Denmark), S. McBreen (University College Dublin, Ireland; MPE), D. H. Hartmann (Clemson University, Clemson, USA), A. C. Updike (Clemson; Dickinson College, Carlisle, USA), R. Filgas (MPE), S. Klose (Thüringer Landessternwarte Tautenburg, Germany), P. Afonso (MPE), C. Clemens (MPE), A. Küpcü Yoldas (ESO, Garching, Germany), F. Olivares E. (MPE), V. Sudilovsky (MPE; TUM) and G. Szokoly (Eötvös University, Budapest, Hungary).

ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 40-metre-class European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

Links

- Research paper: http://www.eso.org/public/archives/releases/sciencepapers/eso1143/eso1143.pdf

- Photos of the VLT: http://www.eso.org/public/images/archive/category/paranal/

Contacts

Sandra Savaglio
Astronomer, Max Planck Institute for Extraterrestrial Physics
Garching bei München, Germany
Tel: +49 89 30000 3358
Cell: +49 151 5194 4223
Email: savaglio@mpe.mpg.de
Richard Hook
ESO, La Silla, Paranal, E-ELT and Survey Telescopes Public Information Officer
Garching bei München, Germany
Cell: +49 151 1537 3591
Email: rhook@eso.org

Richard Hook | EurekAlert!
Further information:
http://www.eso.org

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>