Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


“Virtual Periscope” Sees Above-Surface/Airborne Objects From Underwater View


Researchers modeled virtual periscope on astronomers’ technology used to counter blurring and distortion caused by layers of atmosphere when viewing stars

“Up periscope!” may become a submarine commander's outdated order, thanks to a team of Technion-Israel Institute of Technology researchers who have developed a new technology for viewing objects above the water's surface without a periscope poking its head above the waves.

The technology behind a submerged, “virtual periscope” will be introduced in a presentation at the IEEE International Conference on Computational Photography, held May 2-4, 2014 in Santa Clara, Calif. ( ])

Associate Professor Yoav Y. Schechner, of the Technion Department of Electrical Engineering, and colleagues, developed the virtual periscope called “Stella Maris” (Stellar Marine Refractive Imaging Sensor). The heart of the underwater imaging system is a camera, a pinhole array to admit light (a thin metal sheet with precise, laser-cut holes), a glass diffuser, and mirrors. Sunrays are projected through the pinholes to the diffuser, which is imaged by the camera, beside the distorted object of interest. The latter is then corrected for distortion.

“Raw images taken by a submerged camera are degraded by water-surface waves similarly to degradation of astronomical images by our atmosphere. We borrowed the concept from astronomers who use the Shack-Hartmann astronomical sensor on telescopes to counter blurring and distortion caused by layers of atmosphere,” explains Schechner. “Stella Maris is a novel approach to a virtual periscope as it passively measures water and waves by imaging the refracted sun.”

The unique technology gets around the inevitable distortion caused by the water-surface waves when using a submerged camera, according to Schechner, because of the sharp refractive differences between water and air, random waves at the interface present distortions that are worse than the distortion atmospheric turbulence creates for astronomers peering into space.

“When the water surface is wavy, sun-rays refract according to the waves and project onto the solar image plane,” explains Schechner. “With the pinhole array, we obtain an array of tiny solar images on the diffuser.” When all of the components work together, the Stella Maris system acts as both a wave sensor to estimate the water surface, and a viewing system to see the above surface image of interest through a computerized, “reconstructed” surface.

The Stella Maris virtual periscope is just the latest technology developed by the researchers, who have also found ways to exploit “underwater flicker,” i.e., random change of underwater lighting, caused by the water surface wave motion. Members in the Schechner Hybrid Imaging Lab ( turned the tables on underwater flicker and used the natural rapid and random motion of the light beams to obtain three-dimensional mapping of the sea floor.

According to the developers, the virtual periscope may have potential uses in addition to submarines, where they could reduce the use of traditional periscopes that have been in use for more than a century. Submerged on the sea floor, Stella Maris could be useful for marine biology research where and when viewing and imaging both beneath and above the waves simultaneously is important. Stella Maris could, for example, monitor the habits of seabirds as they fly, then plunge into water and capture prey.

“There are many ways to advance the virtual periscope,” says Schechner, who adds that while the system requires sunlight, they are currently working on a way to gather enough light from moonlight or starlight to be able to use the system at night.

Also contributing to this research were current graduate student Marina Alterman and former graduate student Dr. Yohay Swirski (who is now working in industry). The research was conducted in Schechner's Hybrid Imaging Lab in the Technion Department of Electrical Engineering.

The Technion-Israel Institute of Technology is a major source of the innovation and brainpower that drives the Israeli economy, and a key to Israel's renown as the world's “Start-Up Nation.” Its three Nobel Prize winners exemplify academic excellence. Technion people, ideas and inventions make immeasurable contributions to the world including life-saving medicine, sustainable energy, computer science, water conservation and nanotechnology. The Joan and Irwin Jacobs Technion-Cornell Innovation Institute is a vital component of Cornell NYC Tech, and a model for graduate applied science education that is expected to transform New York City's economy.

American Technion Society (ATS) donors provide critical support for the Technion - more than $1.9 billion since its inception in 1940. Based in New York City, the ATS and its network of chapters across the U.S. provide funds for scholarships, fellowships, faculty recruitment and chairs, research, buildings, laboratories, classrooms and dormitories, and more.

Kevin Hattori | newswise
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>