Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Virtual Periscope” Sees Above-Surface/Airborne Objects From Underwater View

30.04.2014

Researchers modeled virtual periscope on astronomers’ technology used to counter blurring and distortion caused by layers of atmosphere when viewing stars

“Up periscope!” may become a submarine commander's outdated order, thanks to a team of Technion-Israel Institute of Technology researchers who have developed a new technology for viewing objects above the water's surface without a periscope poking its head above the waves.

The technology behind a submerged, “virtual periscope” will be introduced in a presentation at the IEEE International Conference on Computational Photography, held May 2-4, 2014 in Santa Clara, Calif. ( http://www.iccp14.org/ ])

Associate Professor Yoav Y. Schechner, of the Technion Department of Electrical Engineering, and colleagues, developed the virtual periscope called “Stella Maris” (Stellar Marine Refractive Imaging Sensor). The heart of the underwater imaging system is a camera, a pinhole array to admit light (a thin metal sheet with precise, laser-cut holes), a glass diffuser, and mirrors. Sunrays are projected through the pinholes to the diffuser, which is imaged by the camera, beside the distorted object of interest. The latter is then corrected for distortion.

“Raw images taken by a submerged camera are degraded by water-surface waves similarly to degradation of astronomical images by our atmosphere. We borrowed the concept from astronomers who use the Shack-Hartmann astronomical sensor on telescopes to counter blurring and distortion caused by layers of atmosphere,” explains Schechner. “Stella Maris is a novel approach to a virtual periscope as it passively measures water and waves by imaging the refracted sun.”

The unique technology gets around the inevitable distortion caused by the water-surface waves when using a submerged camera, according to Schechner, because of the sharp refractive differences between water and air, random waves at the interface present distortions that are worse than the distortion atmospheric turbulence creates for astronomers peering into space.

“When the water surface is wavy, sun-rays refract according to the waves and project onto the solar image plane,” explains Schechner. “With the pinhole array, we obtain an array of tiny solar images on the diffuser.” When all of the components work together, the Stella Maris system acts as both a wave sensor to estimate the water surface, and a viewing system to see the above surface image of interest through a computerized, “reconstructed” surface.

The Stella Maris virtual periscope is just the latest technology developed by the researchers, who have also found ways to exploit “underwater flicker,” i.e., random change of underwater lighting, caused by the water surface wave motion. Members in the Schechner Hybrid Imaging Lab (http://webee.technion.ac.il/~yoav/lab-and-group/) turned the tables on underwater flicker and used the natural rapid and random motion of the light beams to obtain three-dimensional mapping of the sea floor.

According to the developers, the virtual periscope may have potential uses in addition to submarines, where they could reduce the use of traditional periscopes that have been in use for more than a century. Submerged on the sea floor, Stella Maris could be useful for marine biology research where and when viewing and imaging both beneath and above the waves simultaneously is important. Stella Maris could, for example, monitor the habits of seabirds as they fly, then plunge into water and capture prey.

“There are many ways to advance the virtual periscope,” says Schechner, who adds that while the system requires sunlight, they are currently working on a way to gather enough light from moonlight or starlight to be able to use the system at night.

Also contributing to this research were current graduate student Marina Alterman and former graduate student Dr. Yohay Swirski (who is now working in industry). The research was conducted in Schechner's Hybrid Imaging Lab in the Technion Department of Electrical Engineering.

The Technion-Israel Institute of Technology is a major source of the innovation and brainpower that drives the Israeli economy, and a key to Israel's renown as the world's “Start-Up Nation.” Its three Nobel Prize winners exemplify academic excellence. Technion people, ideas and inventions make immeasurable contributions to the world including life-saving medicine, sustainable energy, computer science, water conservation and nanotechnology. The Joan and Irwin Jacobs Technion-Cornell Innovation Institute is a vital component of Cornell NYC Tech, and a model for graduate applied science education that is expected to transform New York City's economy.

American Technion Society (ATS) donors provide critical support for the Technion - more than $1.9 billion since its inception in 1940. Based in New York City, the ATS and its network of chapters across the U.S. provide funds for scholarships, fellowships, faculty recruitment and chairs, research, buildings, laboratories, classrooms and dormitories, and more.

Kevin Hattori | newswise
Further information:
http://www.ats.org

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>