Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The violent youth of solar proxies steer course of genesis of life

12.08.2009
One of the hottest topics at this year¡¯s XXVIIth General Assembly of the International Astronomical Union (IAU) in Rio de Janeiro, Brazil involves the study of the astrophysical conditions favourable for the development and survival of primordial life.

New research shows that compared to middle-aged stars like the Sun, newly formed stars spin faster generating strong magnetic fields that result in emission of more intense levels of X-rays, ultraviolet rays and charged particles ¡ª all of which could wreak havoc on budding atmospheres and have a dramatic effect on the development of emerging life forms.

Just how rare life is in the Universe is one of the key questions in the natural sciences today. By pulling in multidisciplinary expertise from biology, geology, physics and astronomy, astrobiologists are addressing different facets of this very profound question, and notably how the conditions around different types of stars in an early stage of development might help or hinder the emergence of life in a solar system. Several scientists at the forefront of this research have just concluded IAU Symposium 264 on "Solar and Stellar Variability ¡ª impact on Earth and Planets".

The Sun is awe-inspiring and fearsome ¡ª a superheated ball about 300,000 times as heavy as the Earth, radiating immense amounts of energy and hurling great globs of hot plasma millions of kilometres out into space. The intense radiation from this giant powerhouse would be fatal close to the Sun, but for a planet like Earth, orbiting at a safe distance from these violent outbursts, and bathed by a gentler radiation, the Sun can provide the steady energy supply needed to sustain life. Now sedate and middle-aged, at around 4.5 billion years old, the Sun's wild youth is behind it.

Edward Guinan, a professor of astronomy and astrophysics at Villanova University in the USA, and his "Sun-in-Time" project team have studied stars that are analogues of the Sun at both early and late stages of its lifecycle. These "solar proxies" enable scientists to look through a window in time to see the harsh conditions prevailing in the early or future Solar System, as well as in planetary systems around other stars. These studies could lead to profound insights into the origin of life on Earth and reveal how likely (or unlikely) the rise of life is elsewhere in the cosmos. This work has revealed that the Sun rotated more than ten times faster in its youth (over four billion years ago) than today. The faster a star rotates, the harder the magnetic dynamo at its core works, generating a stronger magnetic field, so the young Sun emitted X-rays and ultraviolet radiation up to several hundred times stronger than the Sun today.

A team led by Jean-Mathias Grie©¬meier from ASTRON in the Netherlands looked at another type of magnetic fields ¡ª that around planets. They found that the presence of planetary magnetic fields plays a major role in determining the potential for life on other planets as they can protect against the effects of both short-lived intense particle storms when the star ejects mass from its corona and the persistent onslaught of particles from the stellar wind. Grie©¬meier says: "Planetary magnetic fields are important for two reasons: they protect the planet against the incoming charged particles, thus preventing the planetary atmosphere from being blown away, and also act as a shield against high energy cosmic rays. The lack of an intrinsic magnetic field may be the reason why today Mars does not have an atmosphere".

Guinan explains a surprising realisation that emerged from their work: "The Sun does not seem like the perfect star for a system where life might arise. Although it is hard to argue with the Sun's ¡®success' as it so far is the only star known to host a planet with life, our studies indicate that the ideal stars to support planets suitable for life for tens of billions of years may be a smaller slower burning ¡®orange dwarf' with a longer lifetime than the Sun ¡ª about 20-40 billion years. These stars, also called K stars, are stable stars with a habitable zone that remains in the same place for tens of billions of years. They are 10 times more numerous than the Sun, and may provide the best potential habitat for life in the long run". He continues: "On the more speculative side we have also found indications that planets like Earth are also not necessarily the best suited for life to thrive. Planets two to three times more massive than the Earth, with a higher gravity, can retain the atmosphere better. They may have a larger liquid iron core giving a stronger magnetic field that protects against the early onslaught of cosmic rays. Furthermore, a larger planet cools more slowly and maintains its magnetic protection. This kind of planet may be more likely to harbour life. I would not trade though ¡ª you can't argue with success".

Manfred Cuntz, an associate professor of physics at the University of Texas at Arlington, USA, and his collaborators have examined both the damaging and the favourable effects of ultraviolet radiation from stars on DNA molecules. This allows them to study the effect on other potential carbon-based extraterrestrial life forms in the habitable zones around other stars. Cuntz says: "The most significant damage associated with ultraviolet light occurs from UV-C, which is produced in enormous quantities in the photosphere of hotter F-type stars and further out, in the chromospheres, of cooler orange K-type and red M-type stars. Our Sun is an intermediate, yellow G-type star. The ultraviolet and cosmic ray environment around a star may very well have ¡®chosen' what type of life could arise around it".

Rocco Mancinelli, an astrobiologist with the Search for Extraterrestrial Life (SETI) Institute in the USA, observes that as life arose on Earth at least 3.5 billion years ago, it must have withstood a barrage of intense solar ultraviolet radiation for a billion years before the oxygen released by these life forms formed the protective ozone layer. Mancinelli studies DNA to delve into some of the ultraviolet protection strategies that evolved in early life forms and still persist in a recognisable form today. As any life in other planetary systems must also contend with radiation from their host stars, these methods for repairing and protecting organisms from ultraviolet damage serve as models for life beyond Earth. Mancinelli says "We also see ultraviolet radiation as a kind of selection mechanism. All three domains of life that exist today have common ultraviolet protection strategies such as a DNA repair mechanism and sheltering in water or in rocks. Those that did not were likely wiped out early on".

The scientists agree that we do yet know how ubiquitous or how fragile life is, but as Guinan concludes: "The Earth's period of habitability is nearly over ¡ª on a cosmological timescale. In a half to one billion years the Sun will start to be too luminous and warm for water to exist in liquid form on Earth, leading to a runaway greenhouse effect in less than 2 billion years".

Lars Lindberg Christensen | EurekAlert!
Further information:
http://www.eso.org

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>