Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Violent helium reaction on white dwarf surface triggers supernova explosion

06.10.2017

An international team of researchers has found evidence a supernova explosion that was first triggered by a helium detonation, reports a new study in Nature this week.

A Type Ia supernova is a type of white dwarf star explosion that occurs in a binary star system where two stars are circling one another. Because these supernovae shine 5 billion times brighter than the Sun they are used in astronomy as a reference point when calculating distances of objects in space.


Upper panels show the first two-days observations of a peculiar type Ia supernova, MUSSES1604D, with Subaru/Hyper Suprime-Cam (left and middle) and follow-up observations with the Gemini-North telescope about one month after the first observation (right). Lower panels show the schematic light curves of MUSSES1604D (green circles denote the stages that the supernova is staying during observations).

Credit: Institute of Astronomy, the University of Tokyo

However, no one has been able to find solid evidence of what triggers these explosions. Moreover, these explosions only occur once every 100 years in any given galaxy, making them difficult to spot.

"Studying Type Ia supernovae is important because they are a valuable tool researchers use to measure the expansion of the universe. A more precise understanding of their history and behavior will help all researchers obtain more accurate results," said author and University of Tokyo School of Science Professor Mamoru Doi.

A team of researchers including Senior Scientist Ken'ichi Nomoto, Professor Naoki Yasuda, and Project Assistant Professor Nao Suzuki from the Kavli Institute for the Physics and Mathematics of the Universe, and lead by University of Tokyo School of Science PhD candidate Ji-an Jiang and Professor Doi, Associate Professor Keichi Maeda at Kyoto University, and Dr. Masaomi Tanaka at the National Astronomical Observatory of Japan, hypothesized Type Ia supernova could be the result of a white dwarf star consuming helium from a companion star.

The extra helium coating the star would trigger a violent burning reaction, which in turn would trigger the star to explode from within as a supernova.

To maximize the chances of finding a new or recent Type Ia supernova, the team used the Hyper Suprime-Cam camera on the Subaru Telescope, which can capture a large area of sky at once.

"Among 100 supernovae we discovered in a single night, we identified a Type Ia supernova that had exploded only within a day before our observation. Surprising, this supernova showed a bright flash in the first day, which we thought must be related to the nature of the explosion.

By comparing the observational data with what we calculated on how burning helium would affect brightness and color over time, we found both theory and observation were in good agreement. This is the first time anyone has found solid evidence supporting a theory," said Maeda.

However, Nomoto says this does not mean they can explain everything about supernovae.

"In this study we found that a supernova was the result of the interaction between a white dwarf star and a companion star made of helium. But do we know whether this companion star was also a white dwarf star or a star much like our Sun? No we don't," said Nomoto.

The team will continue to test their theory against other supernovae. Details of their study were published online in Nature on October 4.

Media Contact

Motoko Kakubayashi
press@ipmu.jp

 @kavliipmu

http://www.ipmu.jp 

Motoko Kakubayashi | EurekAlert!

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>