Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Video Game Processors Help Lower CT Scan Radiation

16.07.2010
CT scans, report researchers from the University of California, San Diego.

Cone beam CT plays an essential role in image-guided radiation therapy (IGRT), a state-of-the-art cancer treatment. IGRT uses repeated scans during a course of radiation therapy to precisely target tumors and minimize radiation damage in surrounding tissue. Though IGRT has improved outcomes, the large cumulative radiation dose from the repeated scans has raised concerns among physicians and patients.

Reducing the total number of X-ray projections and the mAs level per projection (by tuning down the X-ray generator pulse rate, pulse duration and/or current) during a CT scan can help minimize patient’s exposure to radiation, but the change results in noisy, mathematically incomplete data that takes hours to process using the current iterative reconstruction approaches. Because CBCT is mainly used for treatment setup while patients are in the treatment position, fast reconstruction is a requirement, explains lead author Xun Jia, a UCSD postdoctoral fellow.

Based on recent advances in the field of compressed sensing, Jia and his colleagues developed an innovative CT reconstruction algorithm for graphic processing unit (GPU) platforms. The GPU processes data in parallel –-- increasing computational efficiency and making it possible to reconstruct a cone beam CT scan in about two minutes. (Modern GPU cards were originally designed to power 3D computer graphics, especially for video games.)

With only 20 to 40 total number of X-ray projections and 0.1 mAs per projection, the team achieved images clear enough for image-guided radiation therapy. The reconstruction time ranged from 77 to 130 seconds on an NVIDIA Tesla C1060 GPU card, depending on the number of projections –-- an estimated 100 times faster than similar iterative reconstruction approaches, says Jia.

Compared to the currently widely used scanning protocol of about 360 projections with 0.4 mAs per projection, Jia says the new processing method resulted in 36 to 72 times less radiation exposure for patients.

“With our technique, we can reconstruct cone beam CT images with only a few projections -- 40 in most cases -- and lower mAs levels,” he says. “This considerably lowered the radiation dose.”

The reconstruction algorithm is part of the UCSD group’s effort to develop a series of GPU-based low dose technologies for CT scans.

“In my mind, the most interesting and compelling possibilities of this technique are beyond cancer radiotherapy,” says Steve Jiang, senior author of the study and a UCSD associate professor of radiation oncology.

“CT dose has become a major concern of medical community. For each year’s use of today’s scanning technology, the resulting cancers could cause about 14,500 deaths.

“Our work, when extended from cancer radiotherapy to general diagnostic imaging, may provide a unique solution to solve this problem by reducing the CT dose per scan by a factor of 10 or more,” says Jiang.

Funding sources:

"This work is partially funded by the University of California Laboratory Fees Research Program. We also used GPU cards provided by NVIDIA for this project."

The presentation "GPU-Based Fast Cone Beam CT Reconstruction From Undersampled and Noisy Projection Data Via Total Variation" by X Jia et al. will be at 4:00 p.m. on Wednesday, July 21 in room 201B of the Philadelphia Convention Center.

ABSTRACT: http://www.aapm.org/meetings/amos2/pdf/49-13505-3328-390.pdf

MORE MEETING INFORMATION
AAPM is the premier organization in medical physics, a broadly-based scientific and professional discipline encompassing physics principles and applications in medicine and biology. Its membership includes medical physicists who specialize in research that develops cutting-edge technologies and board-certified clinical medical physicists who apply these technologies in community hospitals, clinics, and academic medical centers.

The presentations at the AAPM meeting will cover topics ranging from new ways of imaging the human body to the latest clinical developments on treating cancer with high energy X-rays and electrons from accelerators, brachytherapy with radioactive sources, and protons. Many of the talks and posters are focused on patient safety -- tailoring therapy to the specific needs of people undergoing treatment, such as shaping emissions to conform to tumors, or finding ways to image children safely at lower radiation exposures while maintaining good image quality.

RELATED LINKS
- Main Meeting Web site: http://www.aapm.org/meetings/2010AM/
- Search Abstracts:
http://www.aapm.org/meetings/2010AM/PRSearch.asp?mid=49
- Meeting program:
http://www.aapm.org/meetings/2010AM/MeetingProgram.asp
- AAPM home page: http://www.aapm.org
PRESS REGISTRATION
Journalists are welcome to attend the conference free of charge. AAPM will grant complimentary registration to any full-time or freelance journalist working on assignment. The Press guidelines are posted at: http://www.aapm.org/meetings/2010AM/VirtualPressRoom/default.asp

Advanced registration form online: http://www.aapm.org/meetings/2010AM/VirtualPressRoom/documents/pressregform.pdf

Press registration on-site will take place at the AAPM Registration Desk, 200 Level Bridge just outside Hall A-B in the Pennsylvania Convention Center.

Questions about the meeting or requests for interviews, images, or background information should be directed to Jason Bardi (jbardi@aip.org, 858-775-4080).

ABOUT MEDICAL PHYSICISTS
If you ever had a mammogram, an ultrasound, an X-ray, CT, MRI or a PET scan, a medical physicist was working behind the scenes to make sure the imaging procedure was as effective as possible. Medical physicists are involved in the development of new imaging techniques, improve existing ones, and assure the safety of radiation used in medical procedures in radiology, radiation oncology and nuclear medicine. They collaborate with radiation oncologists to design cancer treatment plans. They provide routine quality assurance and quality control on radiation equipment and procedures to ensure that cancer patients receive the prescribed dose of radiation to the correct location. They also contribute to the development of physics intensive therapeutic techniques, such as the stereotactic radiosurgery and prostate seed implants for cancer to name a few. The annual AAPM meeting is a great resource, providing guidance to physicists to implement the latest and greatest technology in a community hospital close to you.
ABOUT AAPM
The AAPM is a scientific, educational, and professional nonprofit organization whose mission is to advance the science, education and professional practice of medical physics. The Association encourages innovative research and development, helps disseminate scientific and technical information, fosters the education and professional development of medical physicists, and promotes the highest quality medical services for patients. Please visit the Association Web site at http://www.aapm.org/

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>