Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Very Sharp and Very Good: Successful Test for the Astronomical Measuring Instrument LUCI

26.04.2016

Heidelberg researchers played a key role in design and construction – observation at the world’s largest single telescope

After a ten-year design and construction period, a new universal device for astronomical observation at the world’s largest single telescope, the Large Binocular Telescope in Arizona (USA) has been finalised and tested successfully. The highly complex instrument named LUCI allows astronomers to record images and spectra in the infrared with outstanding quality.


A composite image of planetary nebula NGC 6543. The image shows a sky region of 30x30 arc seconds. The images were taken on 20 and 21 March 2016. The luminous gases emitted by the central star are clearly visible.

Source: State Observatory Königstuhl


The LUCI spectrograph after its installation at the telescope. Its main components are hidden in a large cryostat tank behind the two black electronics boxes in the foreground.

Source: State Observatory Königstuhl

It was developed by researchers of the Centre for Astronomy of Heidelberg University (ZAH) in cooperation with colleagues from the Max Planck Institute for Astronomy in Heidelberg and the Max Planck Institute for Extraterrestrial Physics in Garching. The measuring system will undergo further calibrations in the coming weeks.

Once they are complete, LUCI will be available to astronomers for regular observation activities. Researchers hope that the data collected with the new instrument will give them an insight into the “nursery” of stars and even allow them to observe planets that circle remote suns.

Located at an altitude of 3,200 metres on Mount Graham in Arizona, the Large Binocular Telescope (LBT) is equipped with two mirrors of 8.4 metres diameter attached to a single mount. The LBT has the light-collecting power of a twelve-metre telescope, making it the largest single telescope in the world.

To tap its full potential, astrophysicists and engineers are developing special measuring instruments, one of which is LUCI; the abbreviation stands for “Large Binocular Telescope Near-infrared Utility with Camera and Integral Field”.

The universal device can take infrared pictures of a sky region and break up the light emitted by individual objects into its spectral components, as Dr Walter Seifert explains. The scientist at the State Observatory Königstuhl, which belongs to the ZAH, was involved in LUCI’s development from the very start.

Researchers assumed that the LBT would be able to provide much sharper images than the Hubble space telescope. However, for a long time that was not the case, as turbulences in the earth’s atmosphere – the same ones that make the stars appear to “twinkle” – blur images of stars and galaxies to a considerable extent. A new technology with a secondary mirror, known as adaptive optics, makes it possible to compensate for this effect at the Large Binocular Telescope.

Five years ago the LBT delivered the first super-sharp images with a test camera. Now this quality can also be achieved with the complex measuring system LUCI, even though the light emanating from the objects must pass numerous lenses and mirrors before the detector registers the cosmic signal.

The entire optic assembly is housed in a so-called cryostat which cools LUCI’s components to minus 200 degrees Celsius. “This is a necessary step to prevent undesired infrared heat radiation from LUCI’s components that would otherwise outshine the extremely weak infrared light of the observed astronomical objects,” explains Prof. Dr Jochen Heidt of the State Observatory Königstuhl.

The Heidelberg astronomer carried out the most recent test observations which, in his words, delivered “fantastic results”. According to the tests, the optical components are perfectly designed and adjusted. “They definitely deliver better results in the infrared range than Hubble,” underlines Prof. Heidt. LUCI consists of two special cameras that are used for infrared direct images of the sky and for spectroscopic examinations of astronomical objects. A third camera designed to take particularly sharp pictures is now deployed for the first time in combination with the LBT’s adaptive secondary mirror.

It uses the telescope’s full optical resolution. A particularly striking feature of LUCI, according to Prof. Heidt, are the ten fixed and up to 23 exchangeable masks that are used for long-slit and multi-object spectroscopy. This technology, which was developed at the Max Planck Institute for Extraterrestrial Physics, allows astronomers to observe up to two dozen objects at a time. Even with very low working temperatures, the masks can be exchanged without the entire instrument being subjected to a prolonged heating-up and cooling-down phase.

Once the final calibrations are complete, one of LUCI’s applications will be the observation of remote galaxies whose light is in the infrared part of the spectrum due to the cosmic redshift. Researchers also expect LUCI to give them a glimpse of the birthplaces of stars – regions of space that are hidden by intergalactic dust which is transparent only to infrared light.

In addition, they hope to gain new insights into the formation of planets that orbit distant stars. LUCI’s development and construction was a joint undertaking of experts from the State Observatory Königstuhl, the two Max Planck Institutes and additional partners. The latter are scientists from the Mannheim University of Applied Sciences and the Astronomical Institute at the Ruhr University Bochum. The LUCI project was sponsored by the Federal Ministry of Education and Research as a collaborative research project.

Contact:
Dr Guido Thimm
Centre for Astronomy of Heidelberg University (ZAH)
Phone +49 6221 54-1805
thimm@zah.uni-heidelberg.de

Heidelberg University
Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.mpe.mpg.de/ir/lucifer
http://www.lbto.org

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>