Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Where did Venus’s water go?

19.12.2008
Venus Express has made the first detection of an atmospheric loss process on Venus's day-side. Last year, the spacecraft revealed that most of the lost atmosphere escapes from the night-side. Together, these discoveries bring planetary scientists closer to understanding what happened to the water on Venus, which is suspected to have once been as abundant as on Earth.

The spacecraft's magnetometer instrument (MAG) detected the unmistakable signature of hydrogen gas being stripped from the day-side. “This is a process that was believed to be happening at Venus but this is the first time we measured it,” says Magda Delva, Austrian Academy of Sciences, Graz, who leads the investigation.

Thanks to its carefully chosen orbit, Venus Express is strategically positioned to investigate this process; the spacecraft travels in a highly elliptical path sweeping over the poles of the planet.

Water is a key molecule on Earth because it makes life possible. With Earth and Venus approximately the same size, and having formed at the same time, astronomers believe that both planets likely began with similar amounts of the precious liquid. Today, however, the proportions on each planet are extremely different. Earth’s atmosphere and oceans contain 100 000 times the total amount of water on Venus. In spite of the low concentration of water on Venus Delva and colleagues found that some 2x1024 hydrogen nuclei, a constituent atom of the water molecule, were being lost every second from Venus's day-side.

Last year, the Analyser of Space Plasma and Energetic Atoms (ASPERA) on board Venus Express showed that there was a great loss of hydrogen and oxygen on the night-side. Roughly twice as many hydrogen atoms as oxygen atoms were escaping. Because water is made of two hydrogen atoms and one oxygen atom, the observed escape indicates that water is being broken up in the atmosphere of Venus.

The Sun not only emits light and heat into space, it constantly spews out solar wind, a stream of charged particles. This solar wind carries electrical and magnetic fields throughout the Solar System and ‘blows’ past the planets.

Unlike Earth, Venus does not generate a magnetic field. This is significant because Earth’s magnetic field protects its atmosphere from the solar wind. At Venus, however, the solar wind strikes the upper atmosphere and carries off particles into space. Planetary scientists think that the planet has lost part of its water in this way over the four-and-a-half-thousand million years since the planet’s birth.

“We do see water escaping from the night-side but the question remains, how much has been lost in the past in this way,” says Stas Barabash, Swedish Institute of Space Physics, Kiruna and Principal Investigator of ASPERA, that looked at night-side data.

The discovery takes scientists a step towards understanding the details, but it does not provide the last piece of the puzzle. To be certain that the hydrogen is coming from water, Delva and colleagues must also detect the loss of oxygen atoms on the day-side and verify that there are approximately half as many leaving Venus as hydrogen.

So far, this has not been possible. “I keep looking at the magnetometer data but so far I can’t see the signature of oxygen escaping on the day-side,” says Delva.

It also highlights a new mystery. “These results show that there could be at least twice as much hydrogen in the upper atmosphere of Venus than we thought,” says Delva. The detected hydrogen ions could exist in atmospheric regions high above the surface of the planet; but the source of these regions is unknown.

So like a true lady, Venus still retains some of her mystery.

Håkan Svedhem | alfa
Further information:
http://www.esa.int/SPECIALS/Venus_Express/SEM8MYSTGOF_0.html

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>