Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Vanquishing infinity

Old methods lead to a new approach to finding a quantum theory of gravity

Quantum mechanics and Einstein's theory of general relativity are both extremely accurate theories of how the universe works, but all attempts to combine the two into a unified theory have ended in failure.

When physicists try to calculate the properties of a quantum theory of gravity, they find quantities that become infinite -- infinities that are so bad they can't be removed by mathematical gambits that work in other areas of physics.

Now, Zvi Bern, John Carrasco, and Henrik Johanssen at UCLA, Lance Dixon at the Stanford Linear Accelerator Center, and Radu Roiban at Pennsylvania State University have found a way to carry out a new set of gravity calculations with the help of an older theory that has been known since the 1980s to be finite.

Their new results are reported in Physical Review Letters ( and highlighted in a commentary by Hermann Nicolai at the Max Planck Institute for Gravitational Physics in Potsdam, Germany, in Physics (

Previous attempts at removing the fatal infinities in quantum gravity calculations collapsed when researchers discovered that you would need an infinite number of parameters. The problem stems from the point-like and thus infinitesimally small fundamental particles in the theories, so some physicists have developed string theory as a possible approach: instead of point particles, the fundamental entities are vibrating loops of string. But string theory is beset with its own difficulties, as it lays out a "landscape" of possibilities with an astronomical number of scenarios.

The new paper by Bern et al. shows that by combining desirable aspects of string theory and point-like particles, they can use cancellations in the calculations - done with the help of graphical computational methods called Feynman diagrams (and later elaborations) - to escape the problem of infinities. While not a solution to the problem of quantum gravity, nor a result that knocks string theory aside, the findings of Bern et al. show that theories thought to be dead ends may still show the way forward.

Also in Physics this week:

Cosmic alchemy in the laboratory

Advances in experimental techniques that measure nuclear reactions that occur in stars are opening new opportunities for understanding the stellar and chemical evolution of our Universe.

About APS Physics

APS Physics ( publishes expert written commentaries and highlights of papers appearing in the journals of the American Physical Society

James Riordon | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>