Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanquishing infinity

19.08.2009
Old methods lead to a new approach to finding a quantum theory of gravity

Quantum mechanics and Einstein's theory of general relativity are both extremely accurate theories of how the universe works, but all attempts to combine the two into a unified theory have ended in failure.

When physicists try to calculate the properties of a quantum theory of gravity, they find quantities that become infinite -- infinities that are so bad they can't be removed by mathematical gambits that work in other areas of physics.

Now, Zvi Bern, John Carrasco, and Henrik Johanssen at UCLA, Lance Dixon at the Stanford Linear Accelerator Center, and Radu Roiban at Pennsylvania State University have found a way to carry out a new set of gravity calculations with the help of an older theory that has been known since the 1980s to be finite.

Their new results are reported in Physical Review Letters (http://prl.aps.org) and highlighted in a commentary by Hermann Nicolai at the Max Planck Institute for Gravitational Physics in Potsdam, Germany, in Physics (http://physics.aps.org).

Previous attempts at removing the fatal infinities in quantum gravity calculations collapsed when researchers discovered that you would need an infinite number of parameters. The problem stems from the point-like and thus infinitesimally small fundamental particles in the theories, so some physicists have developed string theory as a possible approach: instead of point particles, the fundamental entities are vibrating loops of string. But string theory is beset with its own difficulties, as it lays out a "landscape" of possibilities with an astronomical number of scenarios.

The new paper by Bern et al. shows that by combining desirable aspects of string theory and point-like particles, they can use cancellations in the calculations - done with the help of graphical computational methods called Feynman diagrams (and later elaborations) - to escape the problem of infinities. While not a solution to the problem of quantum gravity, nor a result that knocks string theory aside, the findings of Bern et al. show that theories thought to be dead ends may still show the way forward.

Also in Physics this week:

Cosmic alchemy in the laboratory

Advances in experimental techniques that measure nuclear reactions that occur in stars are opening new opportunities for understanding the stellar and chemical evolution of our Universe.

About APS Physics

APS Physics (http://physics.aps.org) publishes expert written commentaries and highlights of papers appearing in the journals of the American Physical Society

James Riordon | EurekAlert!
Further information:
http://www.aps.org
http://physics.aps.org

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>