Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanderbilt astronomers participate in new search for dark energy

06.10.2009
The most ambitious attempt yet to trace the history of the universe has seen "first light." The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey III (SDSS-III), took its first astronomical data on the night of Sept. 14-15 at the Sloan Foundation telescope in New Mexico.

The goal of the six-year project is to measure the spectra of 1.4 million galaxies and 160,000 quasars, extremely distant objects that shine more brightly than entire galaxies.

The previous sky survey (SDSS-II) determined the two-dimensional position of these objects in the sky. The new project will measure their distance, allowing astronomers to produce a three-dimensional map with unprecedented detail that extends out about one-fifth of the full depth of the visible universe and traces the evolution of the universe back some 6.5 billion years.

"This will give us a three-dimensional map of a large volume of the universe, which is exactly what we need to learn more about dark energy," said assistant professor Andreas Berlind. He and his colleagues in Vanderbilt's physics and astronomy department – assistant professor Kelly Holley-Bockelmann, associate professor Keivan Stassun and professor David Weintraub – are participating in the survey along with 350 scientists from 41 other institutions.

Dark energy is a type of "negative gravity" that seems to play a role in accelerating the expansion of the universe. Scientists think it makes up about 70 percent of the energy/matter of the universe but its basic nature is a mystery. "One of the most sensitive measures of dark energy that we have found is the large-scale distribution of galaxies," Berlind said.

BOSS uses the same telescope as the original Sloan Digital Sky Survey, but it has been equipped with new, specially built spectrographs. The new instruments can measure the spectra of 1,000 objects at a time and are considerably more sensitive than the original instruments so they can record the spectra of extremely dim objects. "The new spectrographs are much more efficient in infrared light," explained Natalie Roe of Berkeley Lab, the instrument scientist for BOSS. "The light emitted by distant galaxies arrives at Earth as infrared light, so these improved spectrographs are able to look much farther back in time."

The Vanderbilt team brings a unique resource to the project: A set of more than 400 simulated universes. These are computer models of the universe that start at the Big Bang and then virtually evolve to the present following known physical laws. "Other groups have produced individual simulations that are more detailed than ours, but we've gone for greater numbers in order to get a better idea of the amount of variation that is possible," said Berlind.

These virtual universes are being used to test the BOSS data analysis methods and will be necessary to interpret BOSS's measurements of dark energy. Berlind and his colleagues are generating simulated observational data from a number of their virtual universes; this data is run through the BOSS analysis pipeline and the results are compared with the original. "This allows us to catch any systematic errors that might throw the results off," he said.

ABOUT SDSS-III AND BOSS

BOSS is the largest of four surveys in SDSS-III, which includes 350 scientists from 42 institutions. The BOSS design and implementation has been led from the U.S. Department of Energy's Lawrence Berkeley National Laboratory. The optical systems were designed and built at Johns Hopkins University, with new CCD cameras designed and built at Princeton University and the University of California at Santa Cruz/Lick Observatory. The University of Washington contributed new optical fiber systems, and Ohio State University designed and built an upgraded BOSS data-acquisition system. The "fully depleted" 16-megapixel CCDs for the red cameras evolved from Berkeley Lab research and were fabricated in Berkeley Lab's MicroSystems Laboratory (MSL).

Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation and the U.S. Department of Energy. The SDSS-III web site is http://www.sdss3.org/.

SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration, including the University of Arizona, the Brazilian Participation Group, University of Cambridge, University of Florida, the French Participation Group, the German Participation Group, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, the U.S. Department of Energy's Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, New Mexico State University, New York University, the Ohio State University, the Pennsylvania State University, University of Portsmouth, Princeton University, University of Tokyo, the University of Utah, Vanderbilt University, University of Virginia and the University of Washington.

For more news about Vanderbilt, visit the Vanderbilt News Service homepage on the Internet at www.vanderbilt.edu/News.

[Note: A multimedia version of this story is available on Exploration, Vanderbilt's online research magazine, at http://www.vanderbilt.edu/exploration/stories/skysurvey.html.]

David F. Salisbury | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>