Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanderbilt astronomers participate in new search for dark energy

06.10.2009
The most ambitious attempt yet to trace the history of the universe has seen "first light." The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey III (SDSS-III), took its first astronomical data on the night of Sept. 14-15 at the Sloan Foundation telescope in New Mexico.

The goal of the six-year project is to measure the spectra of 1.4 million galaxies and 160,000 quasars, extremely distant objects that shine more brightly than entire galaxies.

The previous sky survey (SDSS-II) determined the two-dimensional position of these objects in the sky. The new project will measure their distance, allowing astronomers to produce a three-dimensional map with unprecedented detail that extends out about one-fifth of the full depth of the visible universe and traces the evolution of the universe back some 6.5 billion years.

"This will give us a three-dimensional map of a large volume of the universe, which is exactly what we need to learn more about dark energy," said assistant professor Andreas Berlind. He and his colleagues in Vanderbilt's physics and astronomy department – assistant professor Kelly Holley-Bockelmann, associate professor Keivan Stassun and professor David Weintraub – are participating in the survey along with 350 scientists from 41 other institutions.

Dark energy is a type of "negative gravity" that seems to play a role in accelerating the expansion of the universe. Scientists think it makes up about 70 percent of the energy/matter of the universe but its basic nature is a mystery. "One of the most sensitive measures of dark energy that we have found is the large-scale distribution of galaxies," Berlind said.

BOSS uses the same telescope as the original Sloan Digital Sky Survey, but it has been equipped with new, specially built spectrographs. The new instruments can measure the spectra of 1,000 objects at a time and are considerably more sensitive than the original instruments so they can record the spectra of extremely dim objects. "The new spectrographs are much more efficient in infrared light," explained Natalie Roe of Berkeley Lab, the instrument scientist for BOSS. "The light emitted by distant galaxies arrives at Earth as infrared light, so these improved spectrographs are able to look much farther back in time."

The Vanderbilt team brings a unique resource to the project: A set of more than 400 simulated universes. These are computer models of the universe that start at the Big Bang and then virtually evolve to the present following known physical laws. "Other groups have produced individual simulations that are more detailed than ours, but we've gone for greater numbers in order to get a better idea of the amount of variation that is possible," said Berlind.

These virtual universes are being used to test the BOSS data analysis methods and will be necessary to interpret BOSS's measurements of dark energy. Berlind and his colleagues are generating simulated observational data from a number of their virtual universes; this data is run through the BOSS analysis pipeline and the results are compared with the original. "This allows us to catch any systematic errors that might throw the results off," he said.

ABOUT SDSS-III AND BOSS

BOSS is the largest of four surveys in SDSS-III, which includes 350 scientists from 42 institutions. The BOSS design and implementation has been led from the U.S. Department of Energy's Lawrence Berkeley National Laboratory. The optical systems were designed and built at Johns Hopkins University, with new CCD cameras designed and built at Princeton University and the University of California at Santa Cruz/Lick Observatory. The University of Washington contributed new optical fiber systems, and Ohio State University designed and built an upgraded BOSS data-acquisition system. The "fully depleted" 16-megapixel CCDs for the red cameras evolved from Berkeley Lab research and were fabricated in Berkeley Lab's MicroSystems Laboratory (MSL).

Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation and the U.S. Department of Energy. The SDSS-III web site is http://www.sdss3.org/.

SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration, including the University of Arizona, the Brazilian Participation Group, University of Cambridge, University of Florida, the French Participation Group, the German Participation Group, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, the U.S. Department of Energy's Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, New Mexico State University, New York University, the Ohio State University, the Pennsylvania State University, University of Portsmouth, Princeton University, University of Tokyo, the University of Utah, Vanderbilt University, University of Virginia and the University of Washington.

For more news about Vanderbilt, visit the Vanderbilt News Service homepage on the Internet at www.vanderbilt.edu/News.

[Note: A multimedia version of this story is available on Exploration, Vanderbilt's online research magazine, at http://www.vanderbilt.edu/exploration/stories/skysurvey.html.]

David F. Salisbury | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>