Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanderbilt astronomers participate in new search for dark energy

06.10.2009
The most ambitious attempt yet to trace the history of the universe has seen "first light." The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey III (SDSS-III), took its first astronomical data on the night of Sept. 14-15 at the Sloan Foundation telescope in New Mexico.

The goal of the six-year project is to measure the spectra of 1.4 million galaxies and 160,000 quasars, extremely distant objects that shine more brightly than entire galaxies.

The previous sky survey (SDSS-II) determined the two-dimensional position of these objects in the sky. The new project will measure their distance, allowing astronomers to produce a three-dimensional map with unprecedented detail that extends out about one-fifth of the full depth of the visible universe and traces the evolution of the universe back some 6.5 billion years.

"This will give us a three-dimensional map of a large volume of the universe, which is exactly what we need to learn more about dark energy," said assistant professor Andreas Berlind. He and his colleagues in Vanderbilt's physics and astronomy department – assistant professor Kelly Holley-Bockelmann, associate professor Keivan Stassun and professor David Weintraub – are participating in the survey along with 350 scientists from 41 other institutions.

Dark energy is a type of "negative gravity" that seems to play a role in accelerating the expansion of the universe. Scientists think it makes up about 70 percent of the energy/matter of the universe but its basic nature is a mystery. "One of the most sensitive measures of dark energy that we have found is the large-scale distribution of galaxies," Berlind said.

BOSS uses the same telescope as the original Sloan Digital Sky Survey, but it has been equipped with new, specially built spectrographs. The new instruments can measure the spectra of 1,000 objects at a time and are considerably more sensitive than the original instruments so they can record the spectra of extremely dim objects. "The new spectrographs are much more efficient in infrared light," explained Natalie Roe of Berkeley Lab, the instrument scientist for BOSS. "The light emitted by distant galaxies arrives at Earth as infrared light, so these improved spectrographs are able to look much farther back in time."

The Vanderbilt team brings a unique resource to the project: A set of more than 400 simulated universes. These are computer models of the universe that start at the Big Bang and then virtually evolve to the present following known physical laws. "Other groups have produced individual simulations that are more detailed than ours, but we've gone for greater numbers in order to get a better idea of the amount of variation that is possible," said Berlind.

These virtual universes are being used to test the BOSS data analysis methods and will be necessary to interpret BOSS's measurements of dark energy. Berlind and his colleagues are generating simulated observational data from a number of their virtual universes; this data is run through the BOSS analysis pipeline and the results are compared with the original. "This allows us to catch any systematic errors that might throw the results off," he said.

ABOUT SDSS-III AND BOSS

BOSS is the largest of four surveys in SDSS-III, which includes 350 scientists from 42 institutions. The BOSS design and implementation has been led from the U.S. Department of Energy's Lawrence Berkeley National Laboratory. The optical systems were designed and built at Johns Hopkins University, with new CCD cameras designed and built at Princeton University and the University of California at Santa Cruz/Lick Observatory. The University of Washington contributed new optical fiber systems, and Ohio State University designed and built an upgraded BOSS data-acquisition system. The "fully depleted" 16-megapixel CCDs for the red cameras evolved from Berkeley Lab research and were fabricated in Berkeley Lab's MicroSystems Laboratory (MSL).

Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation and the U.S. Department of Energy. The SDSS-III web site is http://www.sdss3.org/.

SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration, including the University of Arizona, the Brazilian Participation Group, University of Cambridge, University of Florida, the French Participation Group, the German Participation Group, the Michigan State/Notre Dame/JINA Participation Group, Johns Hopkins University, the U.S. Department of Energy's Lawrence Berkeley National Laboratory, Max Planck Institute for Astrophysics, New Mexico State University, New York University, the Ohio State University, the Pennsylvania State University, University of Portsmouth, Princeton University, University of Tokyo, the University of Utah, Vanderbilt University, University of Virginia and the University of Washington.

For more news about Vanderbilt, visit the Vanderbilt News Service homepage on the Internet at www.vanderbilt.edu/News.

[Note: A multimedia version of this story is available on Exploration, Vanderbilt's online research magazine, at http://www.vanderbilt.edu/exploration/stories/skysurvey.html.]

David F. Salisbury | EurekAlert!
Further information:
http://www.vanderbilt.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>