Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW team refrigerates liquids with a laser for the first time

17.11.2015

Since the first laser was invented in 1960, they've always given off heat -- either as a useful tool, a byproduct or a fictional way to vanquish intergalactic enemies.

But those concentrated beams of light have never been able to cool liquids. University of Washington researchers are the first to solve a decades-old puzzle -- figuring out how to make a laser refrigerate water and other liquids under real-world conditions.


As they are cooled by the laser, the nanocrystals developed by the UW team emit a reddish-green "glow" that can be seen by the naked eye.

Credit: Dennis Wise/University of Washington

In a study to be published the week of Nov. 16 in the Proceedings of the National Academy of Sciences, the team used an infrared laser to cool water by about 36 degrees Fahrenheit -- a major breakthrough in the field.

"Typically, when you go to the movies and see Star Wars laser blasters, they heat things up. This is the first example of a laser beam that will refrigerate liquids like water under everyday conditions," said senior author Peter Pauzauskie, UW assistant professor of materials science and engineering. "It was really an open question as to whether this could be done because normally water warms when illuminated."

The discovery could help industrial users "point cool" tiny areas with a focused point of light. Microprocessors, for instance, might someday use a laser beam to cool specific components in computer chips to prevent overheating and enable more efficient information processing.

Scientists could also use a laser beam to precisely cool a portion of a cell as it divides or repairs itself, essentially slowing these rapid processes down and giving researchers the opportunity to see how they work. Or they could cool a single neuron in a network -- essentially silencing without damaging it -- to see how its neighbors bypass it and rewire themselves.

"There's a lot of interest in how cells divide and how molecules and enzymes function, and it's never been possible before to refrigerate them to study their properties," said Pauzauskie, who is also a scientist at the U.S. Department of Energy's Pacific Northwest National Laboratory in Richland, Washington. "Using laser cooling, it may be possible to prepare slow-motion movies of life in action. And the advantage is that you don't have to cool the entire cell, which could kill it or change its behavior."

The UW team chose infrared light for its cooling laser with biological applications in mind, as visible light could give cells a damaging "sunburn." They demonstrated that the laser could refrigerate saline solution and cell culture media that are commonly used in genetic and molecular research.

To achieve the breakthrough, the UW team used a material commonly found in commercial lasers but essentially ran the laser phenomenon in reverse. They illuminated a single microscopic crystal suspended in water with infrared laser light to excite a unique kind of glow that has slightly more energy than that amount of light absorbed.

This higher-energy glow carries heat away from both the crystal and the water surrounding it. The laser refrigeration process was first demonstrated in vacuum conditions at Los Alamos National Laboratory in 1995, but it has taken nearly 20 years to demonstrate this process in liquids.

Typically, growing laser crystals is an expensive process that requires lots of time and can cost thousands of dollars to produce just a single gram of material. The UW team also demonstrated that a low-cost hydrothermal process can be used to manufacture a well-known laser crystal for laser refrigeration applications in a faster, inexpensive and scalable way.

The UW team also designed an instrument that uses a laser trap -- akin to a microscopic tractor beam -- to "hold" a single nanocrystal surrounded by liquid in a chamber and illuminate it with the laser. To determine whether the liquid is cooling, the instrument also projects the particle's "shadow" in a way that allows the researchers to observe minute changes in its motion.

As the surrounding liquid cools, the trapped particle slows down, allowing the team to clearly observe the refrigerating effect. They also designed the crystal to change from a blueish-green to a reddish-green color as it cools, like a built-in color thermometer.

"The real challenge of the project was building an instrument and devising a method capable of determining the temperature of these nanocrystals using signatures of the same light that was used to trap them," said lead author Paden Roder, who recently received his doctorate from the UW in materials science and engineering and now works at Intel Corp.

So far, the UW team has only demonstrated the cooling effect with a single nanocrystal, as exciting multiple crystals would require more laser power. The laser refrigeration process is currently quite energy intensive, Pauzauskie said, and future steps include looking for ways to improve its efficiency.

One day the cooling technology itself might be used to enable higher-power lasers for manufacturing, telecommunications or defense applications, as higher-powered lasers tend to overheat and melt down.

"Few people have thought about how they could use this technology to solve problems because using lasers to refrigerate liquids hasn't been possible before," he said. "We are interested in the ideas other scientists or businesses might have for how this might impact their basic research or bottom line."

###

The research was funded by the Air Force Office of Scientific Research and the UW, and benefitted from additional support from the National Science Foundation, Lawrence Livermore National Laboratory and Pacific Northwest National Laboratory.

Co-authors include UW doctoral students Bennett E. Smith in chemistry, Xuezhe Zhou in materials science and engineering and Matthew Crane in chemical engineering.

For more information, contact Pauzauskie at peterpz@uw.edu or 206-543-2303.

Media Contact

Jennifer Langston
jlangst@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

Jennifer Langston | EurekAlert!

Further reports about: crystals laser beam lasers liquids microscopic surrounding

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>