Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using antineutrinos to monitor nuclear reactors

24.04.2014

Astroparticle physics methodology applied to nuclear facility monitoring

When monitoring nuclear reactors, the International Atomic Energy Agency (IAEA) has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. However, heretofore the cumulative antineutrino spectrum of uranium 238 fission products was missing. Physicists at Technische Universität München (TUM) have now closed this gap using fast neutrons from the Heinz Maier Leibnitz Neutron Research Facility (FRM II).


Dr. Nils Haag developed an experimental setup that allowed him to determine the missing spectrum of uranium 238. (Bild: Wenzel Schuermann / TU München)

In addition to neutrons, the fission reaction of nuclear fuels like plutonium or uranium releases antineutrinos. These are also electrically neutral, but can pass matter very easily, which is why they can be discerned only in huge detectors. Recently, however, detectors on the scale of only one cubic meter have been developed. They can measure antineutrinos from a reactor core, which has generated great interest at the IAEA.

Prototypes of these detectors already exist and collect data at distances of around 10 meters from a reactor core. Changes in the composition of nuclear fuels in the reactor – for example, when weapons-grade U-239 is removed – can be determined by analyzing the energy and rate of antineutrinos. This would free the IAEA from having to rely on representations of reactor operators.

Antineutrino spectrum of uranium 238 revealed

In the 1980s the antineutrino spectra of three main fuel isotopes, uranium 235, plutonium 239 and plutonium 241, were determined. However, the antineutrino spectrum of the fourth main nuclear fuel, uranium 238, which accounts for approximately 10 percent of the total antineutrino flux, remained unclear. It had only been estimated using inaccurate theoretical calculations and thus limited the accuracy of the antineutrino predictions.

Dr. Nils Haag from the Chair of Experimental Astroparticle Physics at TU München recently developed an experimental setup at the FRM II that allowed him to determine the missing spectrum of uranium 238. "I needed a high flux of fast neutrons to induce the fission of the U-238," says the physicist. This is why he located his experimental setup at the NECTAR radiography and tomography station of the FRM II – a source of fast neutrons.

Second detector for background-free measurement

The neutrons induce nuclear fission in a film of U-238. The radioactive decay products then emit electrons and antineutrinos. The electrons were investigated using a scintillator – a block of plastics that converts the kinetic energy of the electrons into light. A photomultiplier then translates this into electrical signals.

The nuclear decay also generates gamma radiation that produces unwanted events in the scintillator. Therefore, Haag placed a second detector right in front of the scintillator: a so-called multi-wire proportional chamber. Since only charged particles like electrons trigger a signal in the gas detector, the researcher was able to determine and subtract the proportion of gamma radiation. Haag then inferred the antineutrino spectrum using this background-free measurement data.

Method allows better monitoring of reactor cores

The measurement of the antineutrino spectrum can be used to monitor the status, performance and even composition of reactor cores. "Our results open the door to predict with significantly higher accuracy the expected antineutrino spectrum emitted by a reactor running on a fuel composition reported by the operator," explains Dr. Nils Haag. "Deviations of antineutrino detector measurement data from expected reactor signals can thus be exposed."

The development of this methodology is embedded in basic research on the phenomenon of so-called "sterile" antineutrinos. Comparing previously made measurements and predictions of reactor antineutrino spectra gave rise to the assumption that some of the antineutrinos turned "sterile" after being produced. They were then no longer able to react with other matter. A better understanding of this effect would expand our knowledge of elementary physical processes.

This research was funded by the German Research Foundation (DFG) and the DFG Excellence Cluster "Origin and Structure of the Universe" at TUM.

Publication:

Experimental Determination of the Antineutrino Spectrum of the Fission Products of U238, N. Haag, A. Gütlein, M. Hofmann, L. Oberauer, W. Potzel, K. Schreckenbach, and F. M. Wagner, Phys. Rev. Lett. 112, 122501 (2014), DOI: 10.1103/PhysRevLett.112.122501, 
journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.122501

Contact

Dr. Nils Haag
Technische Universität München
Chair for Experimental Physics and Astroparticle Physics
Tel.: +49 89 289 12524, E-mail - Internet

Nils Haag | Eurek Alert!

Further reports about: Antineutrino Astroparticle FRM IAEA TUM antineutrinos detector determine energy experimental measurement reactor

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>