Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Using antineutrinos to monitor nuclear reactors


Astroparticle physics methodology applied to nuclear facility monitoring

When monitoring nuclear reactors, the International Atomic Energy Agency (IAEA) has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. However, heretofore the cumulative antineutrino spectrum of uranium 238 fission products was missing. Physicists at Technische Universität München (TUM) have now closed this gap using fast neutrons from the Heinz Maier Leibnitz Neutron Research Facility (FRM II).

Dr. Nils Haag developed an experimental setup that allowed him to determine the missing spectrum of uranium 238. (Bild: Wenzel Schuermann / TU München)

In addition to neutrons, the fission reaction of nuclear fuels like plutonium or uranium releases antineutrinos. These are also electrically neutral, but can pass matter very easily, which is why they can be discerned only in huge detectors. Recently, however, detectors on the scale of only one cubic meter have been developed. They can measure antineutrinos from a reactor core, which has generated great interest at the IAEA.

Prototypes of these detectors already exist and collect data at distances of around 10 meters from a reactor core. Changes in the composition of nuclear fuels in the reactor – for example, when weapons-grade U-239 is removed – can be determined by analyzing the energy and rate of antineutrinos. This would free the IAEA from having to rely on representations of reactor operators.

Antineutrino spectrum of uranium 238 revealed

In the 1980s the antineutrino spectra of three main fuel isotopes, uranium 235, plutonium 239 and plutonium 241, were determined. However, the antineutrino spectrum of the fourth main nuclear fuel, uranium 238, which accounts for approximately 10 percent of the total antineutrino flux, remained unclear. It had only been estimated using inaccurate theoretical calculations and thus limited the accuracy of the antineutrino predictions.

Dr. Nils Haag from the Chair of Experimental Astroparticle Physics at TU München recently developed an experimental setup at the FRM II that allowed him to determine the missing spectrum of uranium 238. "I needed a high flux of fast neutrons to induce the fission of the U-238," says the physicist. This is why he located his experimental setup at the NECTAR radiography and tomography station of the FRM II – a source of fast neutrons.

Second detector for background-free measurement

The neutrons induce nuclear fission in a film of U-238. The radioactive decay products then emit electrons and antineutrinos. The electrons were investigated using a scintillator – a block of plastics that converts the kinetic energy of the electrons into light. A photomultiplier then translates this into electrical signals.

The nuclear decay also generates gamma radiation that produces unwanted events in the scintillator. Therefore, Haag placed a second detector right in front of the scintillator: a so-called multi-wire proportional chamber. Since only charged particles like electrons trigger a signal in the gas detector, the researcher was able to determine and subtract the proportion of gamma radiation. Haag then inferred the antineutrino spectrum using this background-free measurement data.

Method allows better monitoring of reactor cores

The measurement of the antineutrino spectrum can be used to monitor the status, performance and even composition of reactor cores. "Our results open the door to predict with significantly higher accuracy the expected antineutrino spectrum emitted by a reactor running on a fuel composition reported by the operator," explains Dr. Nils Haag. "Deviations of antineutrino detector measurement data from expected reactor signals can thus be exposed."

The development of this methodology is embedded in basic research on the phenomenon of so-called "sterile" antineutrinos. Comparing previously made measurements and predictions of reactor antineutrino spectra gave rise to the assumption that some of the antineutrinos turned "sterile" after being produced. They were then no longer able to react with other matter. A better understanding of this effect would expand our knowledge of elementary physical processes.

This research was funded by the German Research Foundation (DFG) and the DFG Excellence Cluster "Origin and Structure of the Universe" at TUM.


Experimental Determination of the Antineutrino Spectrum of the Fission Products of U238, N. Haag, A. Gütlein, M. Hofmann, L. Oberauer, W. Potzel, K. Schreckenbach, and F. M. Wagner, Phys. Rev. Lett. 112, 122501 (2014), DOI: 10.1103/PhysRevLett.112.122501,


Dr. Nils Haag
Technische Universität München
Chair for Experimental Physics and Astroparticle Physics
Tel.: +49 89 289 12524, E-mail - Internet

Nils Haag | Eurek Alert!

Further reports about: Antineutrino Astroparticle FRM IAEA TUM antineutrinos detector determine energy experimental measurement reactor

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

UCI and NASA document accelerated glacier melting in West Antarctica

26.10.2016 | Earth Sciences

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

More VideoLinks >>>