Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using antineutrinos to monitor nuclear reactors

24.04.2014

Astroparticle physics methodology applied to nuclear facility monitoring

When monitoring nuclear reactors, the International Atomic Energy Agency (IAEA) has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. However, heretofore the cumulative antineutrino spectrum of uranium 238 fission products was missing. Physicists at Technische Universität München (TUM) have now closed this gap using fast neutrons from the Heinz Maier Leibnitz Neutron Research Facility (FRM II).


Dr. Nils Haag developed an experimental setup that allowed him to determine the missing spectrum of uranium 238. (Bild: Wenzel Schuermann / TU München)

In addition to neutrons, the fission reaction of nuclear fuels like plutonium or uranium releases antineutrinos. These are also electrically neutral, but can pass matter very easily, which is why they can be discerned only in huge detectors. Recently, however, detectors on the scale of only one cubic meter have been developed. They can measure antineutrinos from a reactor core, which has generated great interest at the IAEA.

Prototypes of these detectors already exist and collect data at distances of around 10 meters from a reactor core. Changes in the composition of nuclear fuels in the reactor – for example, when weapons-grade U-239 is removed – can be determined by analyzing the energy and rate of antineutrinos. This would free the IAEA from having to rely on representations of reactor operators.

Antineutrino spectrum of uranium 238 revealed

In the 1980s the antineutrino spectra of three main fuel isotopes, uranium 235, plutonium 239 and plutonium 241, were determined. However, the antineutrino spectrum of the fourth main nuclear fuel, uranium 238, which accounts for approximately 10 percent of the total antineutrino flux, remained unclear. It had only been estimated using inaccurate theoretical calculations and thus limited the accuracy of the antineutrino predictions.

Dr. Nils Haag from the Chair of Experimental Astroparticle Physics at TU München recently developed an experimental setup at the FRM II that allowed him to determine the missing spectrum of uranium 238. "I needed a high flux of fast neutrons to induce the fission of the U-238," says the physicist. This is why he located his experimental setup at the NECTAR radiography and tomography station of the FRM II – a source of fast neutrons.

Second detector for background-free measurement

The neutrons induce nuclear fission in a film of U-238. The radioactive decay products then emit electrons and antineutrinos. The electrons were investigated using a scintillator – a block of plastics that converts the kinetic energy of the electrons into light. A photomultiplier then translates this into electrical signals.

The nuclear decay also generates gamma radiation that produces unwanted events in the scintillator. Therefore, Haag placed a second detector right in front of the scintillator: a so-called multi-wire proportional chamber. Since only charged particles like electrons trigger a signal in the gas detector, the researcher was able to determine and subtract the proportion of gamma radiation. Haag then inferred the antineutrino spectrum using this background-free measurement data.

Method allows better monitoring of reactor cores

The measurement of the antineutrino spectrum can be used to monitor the status, performance and even composition of reactor cores. "Our results open the door to predict with significantly higher accuracy the expected antineutrino spectrum emitted by a reactor running on a fuel composition reported by the operator," explains Dr. Nils Haag. "Deviations of antineutrino detector measurement data from expected reactor signals can thus be exposed."

The development of this methodology is embedded in basic research on the phenomenon of so-called "sterile" antineutrinos. Comparing previously made measurements and predictions of reactor antineutrino spectra gave rise to the assumption that some of the antineutrinos turned "sterile" after being produced. They were then no longer able to react with other matter. A better understanding of this effect would expand our knowledge of elementary physical processes.

This research was funded by the German Research Foundation (DFG) and the DFG Excellence Cluster "Origin and Structure of the Universe" at TUM.

Publication:

Experimental Determination of the Antineutrino Spectrum of the Fission Products of U238, N. Haag, A. Gütlein, M. Hofmann, L. Oberauer, W. Potzel, K. Schreckenbach, and F. M. Wagner, Phys. Rev. Lett. 112, 122501 (2014), DOI: 10.1103/PhysRevLett.112.122501, 
journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.122501

Contact

Dr. Nils Haag
Technische Universität München
Chair for Experimental Physics and Astroparticle Physics
Tel.: +49 89 289 12524, E-mail - Internet

Nils Haag | Eurek Alert!

Further reports about: Antineutrino Astroparticle FRM IAEA TUM antineutrinos detector determine energy experimental measurement reactor

More articles from Physics and Astronomy:

nachricht Down to the quantum dot
07.07.2015 | Forschungszentrum Juelich

nachricht Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover
07.07.2015 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Surfing a wake of light

Researchers observe and control light wakes for the first time

When a duck paddles across a pond or a supersonic plane flies through the sky, it leaves a wake in its path. Wakes occur whenever something is traveling...

Im Focus: Light-induced Magnetic Waves in Materials Engineered at the Atomic Scale

Researchers explore ultrafast control of magnetism across interfaces: A new study discovers how the sudden excitation of lattice vibrations in a crystal can trigger a change of the magnetic properties of an atomically-thin layer that lies on its surface.

A research team, led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter at CFEL in Hamburg, the University of Oxford, and the...

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Down to the quantum dot

07.07.2015 | Physics and Astronomy

Tundra study uncovers impact of climate warming in the Arctic

07.07.2015 | Earth Sciences

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover

07.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>