Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USA to participate in the Wendelstein 7-X fusion project

07.07.2011
The USA is investing 7.5 million dollars for the construction of the fusion device Wendelstein 7-X at the Max Planck Institute for Plasma Physics (IPP) in Greifswald.

The President of the Max Planck Society, Peter Gruss, said he was delighted about the US involvement: "This contribution is testimony to the outstanding scientific performance of the Max Planck Institute for Plasma Physics as well as to the importance of the experimental approach in Greifswald. But it also reflects the great interest of the United States in fusion research. After all, the funds that are being invested all come from the "Innovative Approaches to Fusion" programme of the US Department of Energy."

In the three-year project, starting in 2011, scientists from the fusion institutes at Princeton, Oak Ridge and Los Alamos are contributing auxiliary magnetic coils, measuring instruments and planning of special sections of the wall cladding for equipping the German fusion device. In return, the USA will accordingly become a partner in the Wendelstein 7-X research programme.

The objective of fusion research is to develop a power plant that, like the sun, derives energy from fusion of atomic nuclei. This requires that the fuel – an ionised low-density gas, a plasma – be confined in a magnetic field cage having virtually no contract with the vessel wall and then be heated to an ignition temperature of over 100 million degrees. The Wendelstein 7-X fusion device, now being built at Max Planck Institute of Plasma Physics in Greifswald, will, when finished, be the world’s largest and most modern device of the stellarator type. Its magnetic field makes continuous operation possible by simple means.

In the German-American cooperation programme Princeton Plasma Physics Laboratory is making five auxiliary coils for Wendelstein 7-X. The window-size coils, to be installed on the outer casing of the device, are to help precise setting of the magnetic fields at the plasma edge. They ensure that the outer contour of the plasma exactly conforms to the required shape. The basic data for the components are provided by IPP, engineers and scientists from Princeton are in charge of design – which has just undergone the final check – and manufacture of the coils. They are to be delivered at the end of 2012. The 4.3 million-dollar investment for this constitutes the major contribution to the scientific cooperation on Wendelstein 7-X.

Oak Ridge National Laboratory is taking on design of the scraper elements for the plasma edge of Wendelstein 7-X. The new components being introduced into planning are to enhance the device’s performance in continuous operation and ensure greater experimental flexibility. The water-cooled plates have to withstand heavy heat loads of up to 20 megawatts per square metre. This will make it possible to protect wall sections across which the hot plasma will move to its final position in the first 30 seconds of the 30-minute plasma discharges. The sophisticated technology study is to be ready by the end of the year.

Finally, Los Alamos National Laboratory will provide the Wendelstein programme with measuring instruments for observing the plasma, including refined infrared diagnostics: “We envision this three-year period”, state the research institutes involved, “as a step toward a robust partnership in the Wendelstein 7-X research program that will involve physicists and engineers from many U.S. institutions in research that will make a significant impact on the world fusion program.”

Dr. Christina Beck | idw
Further information:
http://www.mpg.de/4366401/USA_Wendelstein_7-X_fusion_project

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>