Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USA to participate in the Wendelstein 7-X fusion project

07.07.2011
The USA is investing 7.5 million dollars for the construction of the fusion device Wendelstein 7-X at the Max Planck Institute for Plasma Physics (IPP) in Greifswald.

The President of the Max Planck Society, Peter Gruss, said he was delighted about the US involvement: "This contribution is testimony to the outstanding scientific performance of the Max Planck Institute for Plasma Physics as well as to the importance of the experimental approach in Greifswald. But it also reflects the great interest of the United States in fusion research. After all, the funds that are being invested all come from the "Innovative Approaches to Fusion" programme of the US Department of Energy."

In the three-year project, starting in 2011, scientists from the fusion institutes at Princeton, Oak Ridge and Los Alamos are contributing auxiliary magnetic coils, measuring instruments and planning of special sections of the wall cladding for equipping the German fusion device. In return, the USA will accordingly become a partner in the Wendelstein 7-X research programme.

The objective of fusion research is to develop a power plant that, like the sun, derives energy from fusion of atomic nuclei. This requires that the fuel – an ionised low-density gas, a plasma – be confined in a magnetic field cage having virtually no contract with the vessel wall and then be heated to an ignition temperature of over 100 million degrees. The Wendelstein 7-X fusion device, now being built at Max Planck Institute of Plasma Physics in Greifswald, will, when finished, be the world’s largest and most modern device of the stellarator type. Its magnetic field makes continuous operation possible by simple means.

In the German-American cooperation programme Princeton Plasma Physics Laboratory is making five auxiliary coils for Wendelstein 7-X. The window-size coils, to be installed on the outer casing of the device, are to help precise setting of the magnetic fields at the plasma edge. They ensure that the outer contour of the plasma exactly conforms to the required shape. The basic data for the components are provided by IPP, engineers and scientists from Princeton are in charge of design – which has just undergone the final check – and manufacture of the coils. They are to be delivered at the end of 2012. The 4.3 million-dollar investment for this constitutes the major contribution to the scientific cooperation on Wendelstein 7-X.

Oak Ridge National Laboratory is taking on design of the scraper elements for the plasma edge of Wendelstein 7-X. The new components being introduced into planning are to enhance the device’s performance in continuous operation and ensure greater experimental flexibility. The water-cooled plates have to withstand heavy heat loads of up to 20 megawatts per square metre. This will make it possible to protect wall sections across which the hot plasma will move to its final position in the first 30 seconds of the 30-minute plasma discharges. The sophisticated technology study is to be ready by the end of the year.

Finally, Los Alamos National Laboratory will provide the Wendelstein programme with measuring instruments for observing the plasma, including refined infrared diagnostics: “We envision this three-year period”, state the research institutes involved, “as a step toward a robust partnership in the Wendelstein 7-X research program that will involve physicists and engineers from many U.S. institutions in research that will make a significant impact on the world fusion program.”

Dr. Christina Beck | idw
Further information:
http://www.mpg.de/4366401/USA_Wendelstein_7-X_fusion_project

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>