Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Upside down and inside out

27.04.2015

Researchers from the University of Cambridge have captured the first three-dimensional images of a live embryo turning itself inside out. The images, of embryos of a green alga called Volvox, make an ideal test case to understand how a remarkably similar process works in early animal development.

Using fluorescence microscopy to observe the Volvox embryos, the researchers were able to test a mathematical model of morphogenesis - the origin and development of an organism's structure and form - and understand how the shape of cells drives the process of inversion, when the embryo turns itself from a sphere to a mushroom shape and back again. Their findings are published today (27 April) in the journal Physical Review Letters.


Researchers have captured the first 3-D video of a living algal embryo turning itself inside out, from a sphere to a mushroom shape and back again. The results could help unravel the mechanical processes at work during a similar process in animals, which has been called the 'most important time in your life.'

Credit: Stephanie Höhn, Aurelia Honerkamp-Smith and Raymond E. Goldstein

The processes observed in the Volvox embryo are similar to the process of gastrulation in animal embryos - which biologist Lewis Wolpert called "the most important event in your life." During gastrulation, the embryo folds inwards into a cup-like shape, forming the primary germ layers which give rise to all the organs in the body. Volvox embryos undergo a similar process, but with an additional twist: the embryos literally turn themselves right-side out during the process.

Gastrulation in animals results from a complex interplay of cell shape changes, cell division and migration, making it difficult to develop a quantitative understanding of the process. However, Volvox embryos complete their shape change only by changing cell shapes and the location of the connections between cells, and this simplicity makes them an ideal model for understanding cell sheet folding.

In Volvox embryos, the process of inversion begins when the embryos start to fold inward, or invaginate, around their middle, forming two hemispheres. Next, one hemisphere moves inside the other, an opening at the top widens, and the outer hemisphere glides over the inner hemisphere, until the embryo regains its spherical shape. This remarkable process takes place over approximately one hour.

Previous work by biologists established that a specific series of cell shape changes is associated with various stages of the process. "Until now there was no quantitative mechanical understanding of whether those changes were sufficient to account for the observed embryo shapes, and existing studies by conventional microscopy were limited to two-dimensional sections and analyses of chemically fixed embryos, rendering comparisons with theory on the dynamics difficult," said Professor Raymond E. Goldstein of the Department of Applied Mathematics and Theoretical Physics, who led the research.

The interdisciplinary group of Cambridge scientists obtained the first three-dimensional visualisations of Volvox inversion and developed a first mathematical model that explains how cell shape changes drive the process of inversion.

Their time-lapse recordings show that during inversion one hemisphere of the embryos shrinks while the other hemisphere stretches out. While previous studies on fixed embryos have also observed this phenomenon, the question was if these changes are caused by forces produced within the invaginating region, or from elsewhere in the embryo.

Through mathematical modelling, the researchers found that only if there is active contraction of one hemisphere and active expansion of the other does the model yield the observed 'mushroom' shape of an inverting Volvox globator embryo.

"It's exciting to be able to finally visualise this intriguing process in 3D," said Dr Stephanie Höhn, the paper's lead author. "This simple organism may provide ground-breaking information to help us understand similar processes in many different types of animals."

These results imply that any cell shape changes happening away from the invagination region seem to be due to active forces intrinsic to the cell, rather than through passive deformations. Since analyses in animal model organisms mostly concentrate on cell shape changes that happen within an invaginating region, the model could be used to make those analyses far more accurate.

"The power of this mathematical model is that we can identify which cell deformations are needed to cause the embryo movements that we observe in nature," said Dr Aurelia Honerkamp-Smith, one of the study's co-authors.

The experimental and theoretical methods demonstrated in this study will be expanded to understand not only the peculiar inversion process but many mysteries concerning morphogenesis. The mathematical model may have applications in a multitude of such topological problems, such as the process of neurulation that leads to the enclosure of the tissue that eventually becomes the spinal cord.

###

Other members of the research team were PhD students Pierre A. Haas (DAMTP) and Philipp Khuc Trong (Physics).

This work was supported by an Earnest Oppenheimer Early Career Fellowship, the EPSRC, and the European Research Council.

Media Contact

Sarah Collins
sarah.collins@admin.cam.ac.uk
44-012-237-65542

 @Cambridge_Uni

http://www.cam.ac.uk 

Sarah Collins | EurekAlert!

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>