Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An upper mass limit for black holes

09.09.2008
There appears to be an upper limit to how big the Universe's most massive black holes can get, according to new research led by a Yale University astrophysicist and published in Monthly Notices of the Royal Astronomical Society.

Once considered rare and exotic objects, black holes are now known to exist throughout the Universe, with the largest and most massive found at the centres of the largest galaxies. These "ultra-massive" black holes have been shown to have masses upwards of one billion times that of our own Sun.

Now, Priyamvada Natarajan, an associate professor of astronomy and physics at Yale University and a fellow at the Radcliffe Institute for Advanced Study, has shown that even the biggest of these gravitational monsters can't keep growing forever. Instead, they appear to curb their own growth - once they accumulate about 10 billion times the mass of the Sun.

These ultra-massive black holes, found at the centres of giant elliptical galaxies in huge galaxy clusters, are the biggest in the known Universe. Even the large black hole at the centre of our own Milky Way galaxy is thousands of times less massive than these behemoths. But these gigantic black holes, which accumulate mass by sucking in matter from neighbouring gas, dust and stars, seem unable to grow beyond this limit regardless of where - and when - they appear in the Universe. "It's not just happening today," said Natarajan. "They shut off at every epoch in the Universe."

The study, which appears in the Monthly Notices of the Royal Astronomical Society (MNRAS) on 15 October, represents the first time an upper mass limit has been derived for black holes. Natarajan used existing optical and X-ray data of these ultra-massive black holes to show that, in order for those various observations to be consistent, the black holes must essentially shut off at some point in their evolution.

One possible explanation put forth by Natarajan is that the black holes eventually reach the point when they radiate so much energy as they consume their surroundings that they end up interfering with the very gas supply that feeds them, which may interrupt nearby star formation. The new findings have implications for the future study of galaxy formation, since many of the largest galaxies in the Universe appear to co-evolve along with the black holes at their centres.

"Evidence has been mounting for the key role that black holes play in the process of galaxy formation," said Natarajan. "But it now appears that they are likely the prima donnas of this space opera."

The authors of the paper are Priyamvada Natarajan (Yale University and the Radcliffe Institute for Advanced Study) and Ezequiel Treister (European Southern Observatory, Chile and University of Hawaii).

Robert Massey | alfa
Further information:
http://www.ras.org.uk
http://www.astro.yale.edu/priya/
http://www.yale.edu/opa

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>